Suppr超能文献

意大利新冠病毒阳性率持续情况的建模。

Modelling the persistence of Covid-19 positivity rate in Italy.

作者信息

Naimoli Antonio

机构信息

Università di Salerno, Dipartimento di Scienze Economiche e Statistiche (DISES), Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.

出版信息

Socioecon Plann Sci. 2022 Aug;82:101225. doi: 10.1016/j.seps.2022.101225. Epub 2022 Jan 7.

Abstract

The current Covid-19 pandemic is severely affecting public health and global economies. In this context, accurately predicting its evolution is essential for planning and providing resources effectively. This paper aims at capturing the dynamics of the positivity rate (PPR) of the novel coronavirus using the Heterogeneous Autoregressive (HAR) model. The use of this model is motivated by two main empirical features arising from the analysis of PPR time series: the changing long-run level and the persistent autocorrelation structure. Compared to the most frequently used Autoregressive Integrated Moving Average (ARIMA) models, the HAR is able to reproduce the strong persistence of the data by using components aggregated at different interval sizes, remaining parsimonious and easy to estimate. The relative merits of the proposed approach are assessed by performing a forecasting study on the Italian dataset. As a robustness check, the analysis of the positivity rate is also conducted by considering the case of the United States. The ability of the HAR-type models to predict the PPR at different horizons is evaluated through several loss functions, comparing the results with those generated by ARIMA models. The Model Confidence Set is used to test the significance of differences in the predictive performances of the models under analysis. Our findings suggest that HAR-type models significantly outperform ARIMA specifications in terms of forecasting accuracy. We also find that the PPR could represent an important metric for monitoring the evolution of hospitalizations, as the peak of patients in intensive care units occurs within 12-16 days after the peak in the positivity rate. This can help governments in planning socio-economic and health policies in advance.

摘要

当前的新冠疫情正在严重影响公众健康和全球经济。在此背景下,准确预测其发展态势对于有效规划和提供资源至关重要。本文旨在使用异质自回归(HAR)模型捕捉新型冠状病毒阳性率(PPR)的动态变化。使用该模型的动机源于对PPR时间序列分析中出现的两个主要实证特征:长期水平的变化和持续的自相关结构。与最常用的自回归积分移动平均(ARIMA)模型相比,HAR能够通过使用不同时间间隔聚合的成分来再现数据的强持续性,同时保持简约且易于估计。通过对意大利数据集进行预测研究来评估所提出方法的相对优点。作为稳健性检验,还考虑美国的情况对阳性率进行分析。通过几个损失函数评估HAR型模型在不同预测期预测PPR的能力,并将结果与ARIMA模型生成的结果进行比较。使用模型置信集来检验所分析模型预测性能差异的显著性。我们的研究结果表明,HAR型模型在预测准确性方面明显优于ARIMA模型。我们还发现,PPR可能是监测住院情况演变的一个重要指标,因为重症监护病房患者的峰值出现在阳性率峰值后的12 - 16天内。这有助于政府提前规划社会经济和卫生政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64d5/8739816/03a8946cea33/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验