Suppr超能文献

基于限制均值的加速失效时间模型中的非参数推断。

Nonparametric inference in the accelerated failure time model using restricted means.

机构信息

Department of Public Health Sciences, University of Chicago, Chicago, USA.

出版信息

Lifetime Data Anal. 2022 Jan;28(1):23-39. doi: 10.1007/s10985-021-09541-5. Epub 2022 Jan 12.

Abstract

We propose a nonparametric estimate of the scale-change parameter for characterizing the difference between two survival functions under the accelerated failure time model using an estimating equation based on restricted means. Advantages of our restricted means based approach compared to current nonparametric procedures is the strictly monotone nature of the estimating equation as a function of the scale-change parameter, leading to a unique root, as well as the availability of a direct standard error estimate, avoiding the need for hazard function estimation or re-sampling to conduct inference. We derive the asymptotic properties of the proposed estimator for fixed and for random point of restriction. In a simulation study, we compare the performance of the proposed estimator with parametric and nonparametric competitors in terms of bias, efficiency, and accuracy of coverage probabilities. The restricted means based approach provides unbiased estimates and accurate confidence interval coverage rates with efficiency ranging from 81% to 95% relative to fitting the correct parametric model. An example from a randomized clinical trial in head and neck cancer is provided to illustrate an application of the methodology in practice.

摘要

我们提出了一种非参数估计量,用于在加速失效时间模型下,通过基于限制均值的估计方程,对两个生存函数之间的差异进行标度变化参数的特征描述。与当前的非参数方法相比,我们基于限制均值的方法的优点是,估计方程作为标度变化参数的函数具有严格单调的性质,导致唯一的根,以及直接标准误差估计的可用性,避免了需要进行危险函数估计或重采样来进行推断。我们推导出了固定和随机限制点的拟议估计量的渐近性质。在模拟研究中,我们比较了拟议估计量与参数和非参数竞争者在偏差、效率和覆盖概率准确性方面的性能。基于限制均值的方法提供了无偏估计和准确的置信区间覆盖率,效率范围为 81%至 95%,相对于拟合正确的参数模型。提供了一个来自头颈部癌症随机临床试验的实例,说明了该方法在实践中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验