Suppr超能文献

城市人群中长期阿片类药物处方的决定因素:一项横断面研究。

Determinants of long-term opioid prescribing in an urban population: A cross-sectional study.

机构信息

Department of Population Health Sciences, King's College London, UK.

出版信息

Br J Clin Pharmacol. 2022 Jul;88(7):3172-3181. doi: 10.1111/bcp.15231. Epub 2022 Feb 7.

Abstract

BACKGROUND

Opioid prescribing has more than doubled in the UK between 1998 and 2016. Potential adverse health implications include dependency, falls and increased health expenditure.

AIM

To describe the predictors of long-term opioid prescribing (LTOP) (≥3 opioid prescriptions in a 90-day period).

DESIGN AND SETTING

A retrospective cross-sectional study in 41 general practices in South London.

METHOD

Multi-level multivariable logistic regression to investigate the determinants of LTOP.

RESULTS

Out of 320 639 registered patients ≥18 years, 2679 (0.8%) were identified as having LTOP. Patients were most likely to have LTOP if they had ≥5 long-term conditions (LTCs) (adjusted odds ratio [AOR] 36.5, 95% confidence interval [CI] 30.4-43.8) or 2-4 LTCs (AOR 13.8, CI 11.9-16.1) in comparison to no LTCs, were ≥75 years compared to 18-24 years (AOR 12.31, CI 7.1-21.5), were smokers compared to nonsmokers (AOR 2.2, CI 2.0-2.5), were female rather than male (AOR 1.9, CI 1.7-2.0) and in the most deprived deprivation quintile (AOR 1.6, CI 1.4-1.8) compared to the least deprived. In a separate model examining individual LTCs, the strongest associations for LTOP were noted for sickle cell disease (SCD) (AOR 18.4, CI 12.8-26.4), osteoarthritis (AOR 3.0, CI 2.8-3.3), rheumatoid arthritis (AOR 2.8, CI 2.2-3.4), depression (AOR 2.6, CI 2.3-2.8) and multiple sclerosis (OR 2.5, CI 1.4-4.4).

CONCLUSION

LTOP was significantly higher in those aged ≥75 years, with multimorbidity or specific LTCs: SCD, osteoarthritis, rheumatoid arthritis, depression and multiple sclerosis. These characteristics may enable the design of targeted interventions to reduce LTOP.

摘要

背景

1998 年至 2016 年期间,英国的阿片类药物处方量增加了一倍多。潜在的健康影响包括依赖、跌倒和增加医疗支出。

目的

描述长期阿片类药物处方(LTOP)(90 天内≥3 次阿片类药物处方)的预测因素。

设计和设置

在伦敦南部的 41 家普通诊所进行的回顾性横断面研究。

方法

多水平多变量逻辑回归分析 LTOP 的决定因素。

结果

在 320639 名≥18 岁的注册患者中,有 2679 名(0.8%)被确定为有 LTOP。与无 LTC 相比,患有≥5 种长期疾病(LTC)(调整后优势比[OR]36.5,95%置信区间[CI]30.4-43.8)或 2-4 种 LTC(OR 13.8,CI 11.9-16.1)的患者最有可能接受 LTOP;与 18-24 岁相比,≥75 岁的患者(OR 12.31,CI 7.1-21.5);与不吸烟者相比,吸烟者(OR 2.2,CI 2.0-2.5);与男性相比,女性(OR 1.9,CI 1.7-2.0);与最贫困的五分位数(OR 1.6,CI 1.4-1.8)相比,最贫困的五分位数(OR 1.6,CI 1.4-1.8)更有可能接受 LTOP。在另一个检查单个 LTC 的模型中,LTOP 与镰状细胞病(SCD)(OR 18.4,CI 12.8-26.4)、骨关节炎(OR 3.0,CI 2.8-3.3)、类风湿关节炎(OR 2.8,CI 2.2-3.4)、抑郁症(OR 2.6,CI 2.3-2.8)和多发性硬化症(OR 2.5,CI 1.4-4.4)之间的相关性最强。

结论

年龄≥75 岁、合并多种疾病或特定 LTC(镰状细胞病、骨关节炎、类风湿关节炎、抑郁症和多发性硬化症)的患者 LTOP 明显更高。这些特征可能有助于设计针对性的干预措施来减少 LTOP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0544/9305420/9ea780296ff3/BCP-88-3172-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验