Xiao Shili, Peng Qingyan, Yang Yuhui, Tao Yongzhen, Zhou Yang, Xu Weilin, Shi Xiangyang
School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, People's Republic of China.
State Key Laboratory Cultivation Base for New Textile Materials & Advanced Processing Technology, Wuhan Textile University, 430200 Wuhan, China.
ACS Appl Bio Mater. 2020 Jan 21;3(1):346-357. doi: 10.1021/acsabm.9b00848. Epub 2020 Jan 2.
Combining biomaterial scaffolds with gene cargos for gene therapy is promising for tissue engineering. Herein, we developed a gene delivery platform through surface grafting of amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers (G5·NH) with biodegradable electrospun poly(lactic--glycolic acid) (PLGA) nanofibers by combining layer-by-layer (LbL) electrostatic assembly technology with dendrimer chemistry. PLGA nanofibers were precoated with positively charged poly(diallydimethylammoium chloride) and poly(acrylic acid) through electrostatic interaction and then subsequently cross-linked with G5·NH dendrimer covalently through 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride chemistry. The successful grafting of G5·NH dendrimer on PLGA nanofibers was confirmed by X-ray photoelectron spectroscopy. Scanning electron microscopy studies show that smooth, uniform morphology of nanofibers does not significantly change after grafting of G5·NH dendrimers except for a slight increase in the fiber diameter, whereas atomic force microscopy images at a high-resolution scale indicated a slightly rough surface for PLGA nanofibers after grafting with G5·NH dendrimer. Additionally, PLGA nanofibrous scaffolds became hydrophilic after grafting with G5·NH dendrimers. Biological investigation showed that the developed G5·NH--PLGA nanofibrous scaffolds not only allowed for the attachment and proliferation of NIH 3T3 cells but also were capable of complexing pDNA and delivering pDNA/dendrimer complex for solid state gene transfection in situ. The functionalization of PLGA nanofibers with dendrimers may find diverse applications in the area of tissue engineering, gene therapy, and drug delivery.
将生物材料支架与基因载体相结合用于基因治疗在组织工程领域具有广阔前景。在此,我们通过将逐层(LbL)静电组装技术与树枝状大分子化学相结合,在可生物降解的电纺聚乳酸-乙醇酸共聚物(PLGA)纳米纤维表面接枝端胺基五代聚酰胺-胺(PAMAM)树枝状大分子(G5·NH),开发了一种基因递送平台。通过静电相互作用,用带正电荷的聚二烯丙基二甲基氯化铵和聚丙烯酸对PLGA纳米纤维进行预涂层,然后通过盐酸1-乙基-3-[3-(二甲氨基)丙基]碳二亚胺化学方法与G5·NH树枝状大分子共价交联。通过X射线光电子能谱证实了G5·NH树枝状大分子成功接枝到PLGA纳米纤维上。扫描电子显微镜研究表明,除了纤维直径略有增加外,接枝G5·NH树枝状大分子后纳米纤维光滑、均匀的形态没有明显变化,而高分辨率的原子力显微镜图像显示接枝G5·NH树枝状大分子后PLGA纳米纤维表面略显粗糙。此外,接枝G5·NH树枝状大分子后PLGA纳米纤维支架变得具有亲水性。生物学研究表明,所开发的G5·NH-PLGA纳米纤维支架不仅允许NIH 3T3细胞附着和增殖,而且能够复合质粒DNA(pDNA)并递送pDNA/树枝状大分子复合物用于原位固态基因转染。用树枝状大分子对PLGA纳米纤维进行功能化修饰可能在组织工程、基因治疗和药物递送领域有多种应用。