Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Metab Eng. 2022 Mar;70:55-66. doi: 10.1016/j.ymben.2022.01.008. Epub 2022 Jan 14.
Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.
壳寡糖(COSs)具有广泛的生物学功能,在各种医药和农业应用方面具有巨大的潜力。尽管已经报道了几种物理、化学和生物学技术来生产 COSs,但仍然难以获得具有确定聚合度(DP)和乙酰化模式的结构确定的 COSs,这阻碍了 COSs 的特定表征和应用。在此,我们在枯草芽孢杆菌中通过组合途径工程实现了结构确定的 COSs 的从头合成。具体来说,来自根瘤菌属 Azorhizobium caulinodans 的 COSs 合酶 NodC 在枯草芽孢杆菌中过表达,导致 30±0.86mg/L 的壳寡糖(CTOSs),这是 N-乙酰葡萄糖胺(GlcNAc)的同寡聚物,其 DP 低于 6,具有明确的定义。然后引入 GlcNAc 合成模块以促进糖受体 GlcNAc 的供应,降低了 CTOSs 的产量,这表明 COSs 合酶 NodC 的活性和糖供体 UDP-GlcNAc 的供应可能是 CTOSs 合成的限制步骤。因此,检查了 6 种外源 COSs 合酶候选物,来自 Mesorhizobium loti 的 nodCM 产生了最高的 CTOSs 产量,为 560±16mg/L。最后,对 UDP-GlcNAc 的从头途径和补救途径进行了工程改造,以进一步促进 CTOSs 的生物合成。在 3-L 分批补料生物反应器中的 CTOSs 产量达到 4.82±0.11g/L(85.6% CTOS5、7.5% CTOS4、5.3% CTOS3 和 1.6% CTOS2),这是迄今为止报道的最高产量。这是首次通过合成生物学证明结构确定的 CTOSs 从头合成的可行性的报道,为进一步工程改造以实现商业生产提供了良好的起点。