Kaushik Vineeta, Goel Manisha
Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/5, Warsaw 01-224, Poland.
ACS Omega. 2021 Dec 20;7(1):70-84. doi: 10.1021/acsomega.1c03216. eCollection 2022 Jan 11.
The Archaea constitute separate domain of life and show resemblance with bacteria in their metabolic pathways while showing similarity with eukaryotes at the level of molecular processes such as cell division, DNA replication, protein synthesis, and proteostasis. However, the molecular machinery of archaea can be considered a simpler version of that found in eukaryotes because of the absence of multiple paralogs for any given molecular factor. Therefore, archaeal systems can possibly be used as a model system for understanding the eukaryotic protein folding machinery and thereby may help to address the molecular mechanism of various protein (mis)foldings and diseases. In the process of protein folding, the cis-trans isomerization of the peptide-prolyl bond is a rate-limiting step for the correct folding of proteins. Different types of peptidyl-prolyl cis-trans isomerases can accelerate this reaction, e.g., cyclophilin, FKBP, and parvulin. Among the five phyla of the archaeal domain, homologs of the cyclophilin protein are found only in two. Here we have characterized a cyclophilin from an archaeal organism, (NmCyp), belonging to the phylum Thaumarchaeota. Like other known cyclophilins, NmCyp also possesses PPIase activity that can be inhibited by cyclosporine A. Generally, archaeal proteins are expected to possess differential thermal stability due to their adaptation to extreme environmental niche conditions. However, NmCyp exhibits low thermal stability and starts to aggregate beyond 40 °C. The properties of NmCyp are compared to those reported for the cyclophilin from another archaeal organism, . The current study sheds light on the differential behavior of cyclophilin proteins from two different phyla of archaea.
古菌构成了一个独立的生命域,它们在代谢途径上与细菌相似,而在细胞分裂、DNA复制、蛋白质合成和蛋白质稳态等分子过程层面与真核生物相似。然而,由于任何给定分子因子都不存在多个旁系同源物,古菌的分子机制可被视为真核生物中分子机制的简化版本。因此,古菌系统有可能被用作理解真核生物蛋白质折叠机制的模型系统,从而有助于阐明各种蛋白质(错误)折叠及相关疾病的分子机制。在蛋白质折叠过程中,肽 - 脯氨酰键的顺反异构化是蛋白质正确折叠的限速步骤。不同类型的肽基脯氨酰顺反异构酶可以加速这一反应,例如亲环蛋白、FKBP和 parvulin。在古菌域的五个门中,仅在两个门中发现了亲环蛋白的同源物。在这里,我们对来自泉古菌门的一种古菌生物(NmCyp)中的亲环蛋白进行了表征。与其他已知的亲环蛋白一样,NmCyp也具有可被环孢素A抑制的肽脯氨酰顺反异构酶(PPIase)活性。一般来说,由于古菌蛋白质适应极端环境生态位条件,预计它们具有不同的热稳定性。然而,NmCyp表现出较低的热稳定性,在40°C以上开始聚集。我们将NmCyp的特性与另一种古菌生物中的亲环蛋白的特性进行了比较。本研究揭示了来自古菌两个不同门的亲环蛋白的不同行为。