Mai Tam V-T, Huynh Lam K
Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 70000, Vietnam.
University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
ACS Omega. 2021 Dec 20;7(1):661-668. doi: 10.1021/acsomega.1c05280. eCollection 2022 Jan 11.
This work reports a detailed mechanism of the initial thermal pyrolysis of isopropyl propionate, (CHC(=O)OCH(CH)), an important biodiesel additive/surrogate, for a wide range of = 500-2000 K and = 7.6-76 000 Torr. The detailed kinetic behaviors of the title reaction on the potential energy surface constructed at the CBS-QB3 level were investigated using the RRKM-based master equation (RRKM-ME) rate model, including hindered internal rotation (HIR) and tunneling corrections. It is revealed that the CH elimination occurring via a six-centered retro-ene transition state is dominant at low temperatures, while the homolytic fission of the C-C bonds becomes more competitive at higher temperatures. The tunneling treatment is found to slightly increase the rate constant at low temperatures (e.g., ∼1.59 times at 563 K), while the HIR treatment, being important at high temperatures, decreases the rate (e.g., by 5.9 times at 2000 K). Showing a good agreement with experiments in low-temperature kinetics, the kinetic model reveals that the pressure effect should be taken into account at high temperatures. Finally, the temperature- and pressure-dependent kinetic mechanism, consisting of the calculated thermodynamic and kinetic data, is provided for further modeling and simulation of any related systems.
本研究报告了丙酸异丙酯(CHC(=O)OCH(CH))这一重要生物柴油添加剂/替代物在500 - 2000 K的广泛温度范围以及7.6 - 76000托的压力范围内初始热解的详细机理。使用基于RRKM的主方程(RRKM - ME)速率模型,包括受阻内旋转(HIR)和隧穿校正,研究了在CBS - QB3水平构建的势能面上该反应的详细动力学行为。结果表明,通过六中心逆烯过渡态发生的CH消除在低温下占主导,而C - C键的均裂在较高温度下更具竞争力。发现隧穿处理在低温下会使速率常数略有增加(例如在563 K时约为1.59倍),而HIR处理在高温下很重要,会降低速率(例如在2000 K时降低5.9倍)。该动力学模型在低温动力学方面与实验结果吻合良好,表明在高温下应考虑压力效应。最后,提供了由计算得到的热力学和动力学数据组成的温度和压力依赖的动力学机理,用于任何相关系统的进一步建模和模拟。