Suppr超能文献

基于通道式变分自动编码器卷积神经网络的任务间迁移学习在运动想象分类中的应用。

Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:226-237. doi: 10.1109/TNSRE.2022.3143836. Epub 2022 Feb 1.

Abstract

Highly sophisticated control based on a brain-computer interface (BCI) requires decoding kinematic information from brain signals. The forearm is a region of the upper limb that is often used in everyday life, but intuitive movements within the same limb have rarely been investigated in previous BCI studies. In this study, we focused on various forearm movement decoding from electroencephalography (EEG) signals using a small number of samples. Ten healthy participants took part in an experiment and performed motor execution (ME) and motor imagery (MI) of the intuitive movement tasks (Dataset I). We propose a convolutional neural network using a channel-wise variational autoencoder (CVNet) based on inter-task transfer learning. We approached that training the reconstructed ME-EEG signals together will also achieve more sufficient classification performance with only a small amount of MI-EEG signals. The proposed CVNet was validated on our own Dataset I and a public dataset, BNCI Horizon 2020 (Dataset II). The classification accuracies of various movements are confirmed to be 0.83 (±0.04) and 0.69 (±0.04) for Dataset I and II, respectively. The results show that the proposed method exhibits performance increases of approximately 0.090.27 and 0.080.24 compared with the conventional models for Dataset I and II, respectively. The outcomes suggest that the training model for decoding imagined movements can be performed using data from ME and a small number of data samples from MI. Hence, it is presented the feasibility of BCI learning strategies that can sufficiently learn deep learning with a few amount of calibration dataset and time only, with stable performance.

摘要

基于脑机接口 (BCI) 的高度复杂控制需要从脑信号中解码运动信息。前臂是上肢的一个区域,在日常生活中经常使用,但在以前的 BCI 研究中,很少研究同一肢体的直观运动。在这项研究中,我们专注于使用少量样本从脑电图 (EEG) 信号中解码各种前臂运动。十名健康参与者参与了一项实验,并执行了直观运动任务的运动执行 (ME) 和运动想象 (MI)(数据集 I)。我们提出了一种基于任务间迁移学习的卷积神经网络,使用通道变化自动编码器 (CVNet)。我们的方法是,同时训练对 ME-EEG 信号的重建,也将仅使用少量 MI-EEG 信号实现更充分的分类性能。所提出的 CVNet 在我们自己的数据集 I 和公共数据集 BNCI Horizon 2020(数据集 II)上进行了验证。确认各种运动的分类准确率分别为数据集 I 和 II 的 0.83(±0.04)和 0.69(±0.04)。结果表明,与传统模型相比,所提出的方法在数据集 I 和 II 上分别提高了约 0.090.27 和 0.080.24 的性能。结果表明,可以使用 ME 的数据和少量 MI 数据样本对想象运动的解码训练模型进行训练。因此,提出了 BCI 学习策略的可行性,这些策略仅用少量的校准数据集和时间即可充分学习深度学习,并具有稳定的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验