Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Rome, Italy.
Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
J Neural Eng. 2022 Jan 6;18(6). doi: 10.1088/1741-2552/ac4430.
Brain-computer interface (BCI) aims to establish communication paths between the brain processes and external devices. Different methods have been used to extract human intentions from electroencephalography (EEG) recordings. Those based on motor imagery (MI) seem to have a great potential for future applications. These approaches rely on the extraction of EEG distinctive patterns during imagined movements. Techniques able to extract patterns from raw signals represent an important target for BCI as they do not need labor-intensive data pre-processing.We propose a new approach based on a 10-layer one-dimensional convolution neural network (1D-CNN) to classify five brain states (four MI classes plus a 'baseline' class) using a data augmentation algorithm and a limited number of EEG channels. In addition, we present a transfer learning method used to extract critical features from the EEG group dataset and then to customize the model to the single individual by training its late layers with only 12-min individual-related data.The model tested with the 'EEG Motor Movement/Imagery Dataset' outperforms the current state-of-the-art models by achieving a99.38%accuracy at the group level. In addition, the transfer learning approach we present achieves an average accuracy of99.46%.The proposed methods could foster the development of future BCI applications relying on few-channel portable recording devices and individual-based training.
脑机接口 (BCI) 旨在建立大脑过程与外部设备之间的通信路径。已经使用了不同的方法从脑电图 (EEG) 记录中提取人类意图。那些基于运动想象 (MI) 的方法似乎具有很大的未来应用潜力。这些方法依赖于从想象运动中提取 EEG 独特模式。能够从原始信号中提取模式的技术是 BCI 的一个重要目标,因为它们不需要劳动密集型的数据预处理。我们提出了一种新的方法,该方法基于 10 层一维卷积神经网络 (1D-CNN),使用数据增强算法和有限数量的 EEG 通道对五种大脑状态(四类 MI 类加一个“基线”类)进行分类。此外,我们还提出了一种迁移学习方法,用于从 EEG 组数据集提取关键特征,然后通过仅使用 12 分钟的个体相关数据对模型的后期层进行训练,将模型定制到个体。使用“EEG 运动/想象数据集”测试的模型在组水平上达到 99.38%的准确率,优于当前最先进的模型。此外,我们提出的迁移学习方法的平均准确率为 99.46%。所提出的方法可以促进未来基于少数通道便携式记录设备和个体训练的 BCI 应用的发展。