Suppr超能文献

基于多尺度脑区划分和连接组学的高密度视觉诱发电位源成像。

Source imaging of high-density visual evoked potentials with multi-scale brain parcellations and connectomes.

机构信息

Perceptual Networks Group, University of Fribourg, Fribourg, Switzerland.

Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Sci Data. 2022 Jan 19;9(1):9. doi: 10.1038/s41597-021-01116-1.

Abstract

We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). It includes raw data and derivatives of high-density EEG, structural MRI, diffusion weighted images (DWI) and single-trial behavior (accuracy, reaction time). Visual evoked potentials (VEPs) were recorded while participants (n = 20) discriminated briefly presented faces from scrambled faces, or coherently moving stimuli from incoherent ones. EEG and MRI were recorded separately from the same participants. The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the corresponding structural connectomes computed from fiber count, fiber density, average fractional anisotropy and mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal methods development, studying structure-function relations, and to unimodal optimization of source imaging and graph analyses, among many other possibilities.

摘要

我们描述了多模态神经影像学数据集 VEPCON(OpenNeuro 数据集 ds003505)。它包括高密度脑电图、结构磁共振成像、扩散加权图像(DWI)和单次试验行为(准确性、反应时间)的原始数据和衍生数据。当参与者(n=20)辨别短暂呈现的面孔与乱序面孔,或一致运动刺激与不一致运动刺激时,记录视觉诱发电位(VEPs)。EEG 和 MRI 是从同一批参与者中分别记录的。该数据集包含原始 EEG 和行为数据、每个条件下的单次试验预处理 EEG、结构 MRI、5 个空间分辨率(83 到 1015 个区域)的个体脑区划分,以及从纤维计数、纤维密度、平均各向异性和平均弥散度图计算得到的相应结构连通性。对于源成像,VEPCON 提供了基于个体解剖结构的 EEG 逆解,并用 Python 和 Matlab 脚本从每个区划分层中提取每个脑区的活动时间序列。这个符合 BIDS 标准的数据集可以为多模态方法的发展、结构-功能关系的研究以及源成像和图谱分析的单模态优化等许多其他可能性做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba3/8770500/a16a1762d326/41597_2021_1116_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验