Suppr超能文献

基于 T1-MRI 数据的多目标优化算法对早期轻度认知障碍的诊断。

Diagnosis of early mild cognitive impairment using a multiobjective optimization algorithm based on T1-MRI data.

机构信息

School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.

School of Psychology, Keynes College, University of Kent, Canterbury, UK.

出版信息

Sci Rep. 2022 Jan 19;12(1):1020. doi: 10.1038/s41598-022-04943-3.

Abstract

Alzheimer's disease (AD) is the most prevalent form of dementia. The accurate diagnosis of AD, especially in the early phases is very important for timely intervention. It has been suggested that brain atrophy, as measured with structural magnetic resonance imaging (sMRI), can be an efficacy marker of neurodegeneration. While classification methods have been successful in diagnosis of AD, the performance of such methods have been very poor in diagnosis of those in early stages of mild cognitive impairment (EMCI). Therefore, in this study we investigated whether optimisation based on evolutionary algorithms (EA) can be an effective tool in diagnosis of EMCI as compared to cognitively normal participants (CNs). Structural MRI data for patients with EMCI (n = 54) and CN participants (n = 56) was extracted from Alzheimer's disease Neuroimaging Initiative (ADNI). Using three automatic brain segmentation methods, we extracted volumetric parameters as input to the optimisation algorithms. Our method achieved classification accuracy of greater than 93%. This accuracy level is higher than the previously suggested methods of classification of CN and EMCI using a single- or multiple modalities of imaging data. Our results show that with an effective optimisation method, a single modality of biomarkers can be enough to achieve a high classification accuracy.

摘要

阿尔茨海默病(AD)是最常见的痴呆症形式。AD 的准确诊断,尤其是在早期阶段,对于及时干预非常重要。有人提出,使用结构磁共振成像(sMRI)测量的脑萎缩可以作为神经退行性变的疗效标志物。虽然分类方法已成功用于 AD 的诊断,但在诊断轻度认知障碍(EMCI)早期阶段的患者时,这些方法的性能非常差。因此,在这项研究中,我们研究了基于进化算法(EA)的优化是否可以作为与认知正常参与者(CN)相比,诊断 EMCI 的有效工具。从阿尔茨海默病神经影像学倡议(ADNI)中提取了 EMCI 患者(n=54)和 CN 参与者(n=56)的结构 MRI 数据。使用三种自动脑分割方法,我们提取了体积参数作为优化算法的输入。我们的方法实现了超过 93%的分类准确性。这一准确性水平高于以前使用单一或多种成像数据模式对 CN 和 EMCI 进行分类的建议方法。我们的结果表明,通过有效的优化方法,单一模式的生物标志物就足以实现高分类准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/307e/8770462/990d5827a699/41598_2022_4943_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验