Suppr超能文献

用于早期轻度认知障碍检测的改进深度典型相关融合方法

Improved deep canonical correlation fusion approach for detection of early mild cognitive impairment.

作者信息

Shaji Sreelakshmi, Palanisamy Rohini, Swaminathan Ramakrishnan

机构信息

Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.

Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, India.

出版信息

Med Biol Eng Comput. 2025 May;63(5):1451-1461. doi: 10.1007/s11517-024-03282-x. Epub 2025 Jan 14.

Abstract

Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition. For this, obtained structural MR images of healthy controls and EMCI subjects are preprocessed. Lateral ventricles and corpus callosum structures are segmented from these images and features are extracted. Extracted features from different brain structures are fused using non-linear orthogonal iteration-based deep CCA. Fused features are employed to differentiate healthy controls and EMCI condition using extreme learning machine classifier. Results indicate that fused callosal and ventricular features are able to detect EMCI. Improved deep CCA algorithm with tuned hyperparameters achieves the highest classifier performance with an F-score of 82.15%. The proposed framework is compared with state-of-the-art CCA approaches, and the results demonstrate its improved performance in EMCI detection. This highlights the potential of the proposed framework in the automated diagnosis of preclinical MCI conditions.

摘要

早期轻度认知障碍(EMCI)的检测在临床上具有挑战性,因为它涉及多个脑亚解剖区域的细微变化。在不同的脑区中,胼胝体和侧脑室主要受EMCI影响。在本研究中,提出了一种基于改进深度典型相关分析(CCA)的框架,用于融合来自侧脑室和胼胝体结构的磁共振(MR)图像特征,以检测EMCI状况。为此,对获得的健康对照者和EMCI受试者的结构MR图像进行预处理。从这些图像中分割出侧脑室和胼胝体结构,并提取特征。使用基于非线性正交迭代的深度CCA融合来自不同脑结构的提取特征。使用极限学习机分类器,利用融合特征区分健康对照者和EMCI状况。结果表明,融合的胼胝体和脑室特征能够检测出EMCI。具有调优超参数的改进深度CCA算法实现了最高的分类器性能,F值为82.15%。将所提出的框架与现有最先进的CCA方法进行比较,结果证明了其在EMCI检测中的性能改进。这突出了所提出框架在临床前MCI状况自动诊断中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验