Suppr超能文献

豌豆中无机氮的运输和同化()。

Inorganic Nitrogen Transport and Assimilation in Pea ().

机构信息

Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.

CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.

出版信息

Genes (Basel). 2022 Jan 17;13(1):158. doi: 10.3390/genes13010158.

Abstract

The genome sequences of several legume species are now available allowing the comparison of the nitrogen (N) transporter inventories with non-legume species. A survey of the genes encoding inorganic N transporters and the sensing and assimilatory families in pea, revealed similar numbers of genes encoding the primary N assimilatory enzymes to those in other types of plants. Interestingly, we find that pea and have fewer members of the NRT2 nitrate transporter family. We suggest that this difference may result from a decreased dependency on soil nitrate acquisition, as legumes have the capacity to derive N from a symbiotic relationship with diazotrophs. Comparison with , indicates that only one of three NRT2s in pea is likely to be functional, possibly indicating less N uptake before nodule formation and N-fixation starts. Pea seeds are large, containing generous amounts of N-rich storage proteins providing a reserve that helps seedling establishment and this may also explain why fewer high affinity nitrate transporters are required. The capacity for nitrate accumulation in the vacuole is another component of assimilation, as it can provide a storage reservoir that supplies the plant when soil N is depleted. Comparing published pea tissue nitrate concentrations with other plants, we find that there is less accumulation of nitrate, even in non-nodulated plants, and that suggests a lower capacity for vacuolar storage. The long-distance transported form of organic N in the phloem is known to be specialized in legumes, with increased amounts of organic N molecules transported, like ureides, allantoin, asparagine and amides in pea. We suggest that, in general, the lower tissue and phloem nitrate levels compared with non-legumes may also result in less requirement for high affinity nitrate transporters. The pattern of N transporter and assimilatory enzyme distribution in pea is discussed and compared with non-legumes with the aim of identifying future breeding targets.

摘要

几种豆科植物的基因组序列现已可用,这使得我们可以将氮(N)转运蛋白的组成与非豆科植物进行比较。对豌豆中无机 N 转运蛋白和感应及同化家族的基因进行调查,揭示了编码主要 N 同化酶的基因数量与其他类型植物相似。有趣的是,我们发现豌豆和 具有较少的 NRT2 硝酸盐转运家族成员。我们认为,这种差异可能是由于对土壤硝酸盐获取的依赖性降低所致,因为豆科植物具有与固氮菌共生获得 N 的能力。与 进行比较表明,豌豆中可能只有一个 NRT2 是有功能的,这可能表明在形成根瘤和固氮开始之前,N 的吸收较少。豌豆种子较大,含有大量富含 N 的储存蛋白,为幼苗的建立提供了储备,这也可能解释了为什么需要较少的高亲和力硝酸盐转运蛋白。液泡中硝酸盐的积累能力是同化的另一个组成部分,因为它可以在土壤 N 耗尽时提供植物储存的氮源。将已发表的豌豆组织硝酸盐浓度与其他植物进行比较,我们发现即使在未结瘤的植物中,硝酸盐的积累也较少,这表明液泡储存的能力较低。韧皮部中有机 N 的长距离运输形式在豆科植物中是特有的,运输的有机 N 分子数量增加,如豌豆中的脲、全氮、天门冬酰胺和酰胺。我们认为,与非豆科植物相比,一般来说,组织和韧皮部中硝酸盐水平较低也可能导致对高亲和力硝酸盐转运蛋白的需求降低。讨论了豌豆中 N 转运蛋白和同化酶的分布模式,并与非豆科植物进行了比较,目的是确定未来的育种目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1590/8774688/c6a24836eeed/genes-13-00158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验