Chen Baizhi, Shi Yan, Lu Lu, Wang Luyao, Sun Yuchen, Ning Weidong, Liu Zijian, Cheng Shifeng
Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China.
Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China; Shenzhen Research Institute of Henan University, Shenzhen, 518000, China.
Plant Physiol Biochem. 2024 Jan;206:108191. doi: 10.1016/j.plaphy.2023.108191. Epub 2023 Nov 20.
Nitrate, the primary form of nitrogen absorbed by plants, supplies essential compounds for plant growth and development. Peas are frequently used as rotation crops to improve and stabilize soil fertility. However, the determinants of nitrate uptake and transport in peas remain largely unclear, primarily due to the pea genome's complexity and size. In this study, we utilized the complete genomic information of peas to identify three PsNRT2 family genes within the pea genome. We conducted a comprehensive examination of their protein conserved domains, physicochemical properties, gene structure, and phylogenetic evolution, revealing PsNRT2.3 as the potential key gene for high-affinity nitrate transport in peas. Subcellular localization studies indicated that PsNRT2.3 resides on the plasma membrane. Using hairy root transformation, we noted the predominant expression of PsNRT2.3 in the root stele, which is inducible by nitrate. Our experiments involving overexpression and silencing methods further confirmed that PsNRT2.3 plays a key role in enhancing nitrate uptake in peas. Additionally, our work showed that PsNAR could interact with PsNRT2.3, modulating pea nitrate uptake. After silencing PsNAR, even with the normal expression of PsNRT2.3, the ability of peas to absorb nitrate was significantly reduced. In conclusion, this study identifies the high-affinity nitrate transport gene PsNRT2.3 in peas and clarifies its critical role and regulatory network in nitrate transport, contributing to a new understanding of nitrate utilization in peas.
硝酸盐是植物吸收的主要氮素形式,为植物生长发育提供必需的化合物。豌豆常被用作轮作作物以改善和稳定土壤肥力。然而,豌豆中硝酸盐吸收和转运的决定因素仍 largely 不清楚,主要是由于豌豆基因组的复杂性和大小。在本研究中,我们利用豌豆的完整基因组信息在豌豆基因组中鉴定出三个 PsNRT2 家族基因。我们对它们的蛋白质保守结构域、理化性质、基因结构和系统发育进化进行了全面研究,揭示 PsNRT2.3 是豌豆中高亲和力硝酸盐转运的潜在关键基因。亚细胞定位研究表明 PsNRT2.3 位于质膜上。通过发根转化,我们注意到 PsNRT2.3 在根中柱中主要表达,且受硝酸盐诱导。我们采用过表达和沉默方法的实验进一步证实 PsNRT2.3 在增强豌豆硝酸盐吸收中起关键作用。此外,我们的工作表明 PsNAR 可以与 PsNRT2.3 相互作用,调节豌豆硝酸盐吸收。沉默 PsNAR 后,即使 PsNRT2.3 正常表达,豌豆吸收硝酸盐的能力也显著降低。总之,本研究鉴定了豌豆中高亲和力硝酸盐转运基因 PsNRT2.3,并阐明了其在硝酸盐转运中的关键作用和调控网络,有助于对豌豆硝酸盐利用的新理解。