Suppr超能文献

用于将寡核苷酸递送至中枢神经系统的纳米载体。

Nanocarriers for Delivery of Oligonucleotides to the CNS.

机构信息

Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK.

出版信息

Int J Mol Sci. 2022 Jan 11;23(2):760. doi: 10.3390/ijms23020760.

Abstract

Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.

摘要

与纳米载体结合或整合到基质中的寡核苷酸可用于基因编辑或调节中枢神经系统中的基因表达。这些纳米载体通常针对神经元或神经胶质细胞的转染进行优化。它们还可以促进穿过脑内皮细胞的转胞吞作用,以绕过血脑屏障。本综述探讨了不同形式的纳米载体及其携带的寡核苷酸货物,以及它们进入大脑、调节基因表达或疾病的能力。纳米载体的大小对于决定其从血浆中的清除速度以及内皮细胞转胞吞的细胞内途径至关重要。表面电荷对于确定其与内皮细胞和靶细胞的相互作用方式很重要。寡核苷酸的结构影响其稳定性和降解速度,而纳米载体的化学配方主要控制货物释放的位置和速度。由于人类和疾病动物模型之间存在显著的解剖学差异,寡核苷酸在人类中的成功基因治疗需要鞘内注射。在动物模型中,通过在纳米载体上进行脑室或静脉内注射已经取得了一些进展。然而,要使大量的纳米载体穿过血脑屏障进入人体,可能需要针对内皮溶质载体或囊泡转运系统进行靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ecc/8775451/5728470be113/ijms-23-00760-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验