文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同 SARS-CoV-2 疫苗接种方案后的体液免疫应答。

Humoral immune response after different SARS-CoV-2 vaccination regimens.

机构信息

Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany.

Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany.

出版信息

BMC Med. 2022 Jan 21;20(1):31. doi: 10.1186/s12916-021-02231-x.


DOI:10.1186/s12916-021-02231-x
PMID:35057798
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8776512/
Abstract

BACKGROUND: The humoral immune response after primary immunisation with a SARS-CoV-2 vector vaccine (AstraZeneca AZD1222, ChAdOx1 nCoV-19, Vaxzevria) followed by an mRNA vaccine boost (Pfizer/BioNTech, BNT162b2; Moderna, m-1273) was examined and compared with the antibody response after homologous vaccination schemes (AZD1222/AZD1222 or BNT162b2/BNT162b2). METHODS: Sera from 59 vaccinees were tested for anti-SARS-CoV-2 immunoglobulin G (IgG) and virus-neutralising antibodies (VNA) with three IgG assays based on (parts of) the SARS-CoV-2 spike (S)-protein as antigen, an IgG immunoblot (additionally contains the SARS-CoV-2 nucleoprotein (NP) as an antigen), a surrogate neutralisation test (sVNT), and a Vero-cell-based virus-neutralisation test (cVNT) with the B.1.1.7 variant of concern (VOC; alpha) as antigen. Investigation was done before and after heterologous (n = 30 and 42) or homologous booster vaccination (AZD1222/AZD1222, n = 8/9; BNT162b2/BNT162b2, n = 8/8). After the second immunisation, a subgroup of 26 age- and gender-matched sera (AZD1222/mRNA, n = 9; AZD1222/AZD1222, n = 9; BNT162b2/BNT162b2, n = 8) was also tested for VNA against VOC B.1.617.2 (delta) in the cVNT. The strength of IgG binding to separate SARS-CoV-2 antigens was measured by avidity. RESULTS: After the first vaccination, the prevalence of IgG directed against the (trimeric) SARS-CoV-2 S-protein and its receptor binding domain (RBD) varied from 55-95% (AZD1222) to 100% (BNT162b2), depending on the vaccine regimen and the SARS-CoV-2 antigen used. The booster vaccination resulted in 100% seroconversion and the occurrence of highly avid IgG, which is directed against the S-protein subunit 1 and the RBD, as well as VNA against VOC B.1.1.7, while anti-NP IgGs were not detected. The results of the three anti-SARS-CoV-2 IgG tests showed an excellent correlation to the VNA titres against this VOC. The agreement of cVNT and sVNT results was good. However, the sVNT seems to overestimate non- and weak B.1.1.7-neutralising titres. The anti-SARS-CoV-2 IgG concentrations and the B.1.1.7-neutralising titres were significantly higher after heterologous vaccination compared to the homologous AZD1222 scheme. If VOC B.1.617.2 was used as antigen, significantly lower VNA titres were measured in the cVNT, and three (33.3%) vector vaccine recipients had a VNA titre < 1:10. CONCLUSIONS: Heterologous SARS-CoV-2 vaccination leads to a strong antibody response with anti-SARS-CoV-2 IgG concentrations and VNA titres at a level comparable to that of a homologous BNT162b2 vaccination scheme. Irrespective of the chosen immunisation regime, highly avid IgG antibodies can be detected just 2 weeks after the second vaccine dose indicating the development of a robust humoral immunity. The reduction in the VNA titre against VOC B.1.617.2 observed in the subgroup of 26 individuals is remarkable and confirms the immune escape of the delta variant.

摘要

背景:在接种了阿斯利康 AZD1222(ChAdOx1 nCoV-19,Vaxzevria)的 SARS-CoV-2 载体疫苗后进行了初次免疫,随后又进行了 mRNA 疫苗加强针(辉瑞/BioNTech,BNT162b2;Moderna,m-1273),检查并比较了同源疫苗接种方案(AZD1222/AZD1222 或 BNT162b2/BNT162b2)后的体液免疫反应。

方法:使用三种基于 SARS-CoV-2 刺突(S)-蛋白部分抗原的 IgG 检测试剂盒(分别基于部分 SARS-CoV-2 刺突(S)-蛋白、IgG 免疫印迹(还包含 SARS-CoV-2 核蛋白(NP)作为抗原)、替代中和试验(sVNT)和基于vero 细胞的病毒中和试验(cVNT),用关注的 B.1.1.7 变体(alpha)作为抗原)检测 59 名疫苗接种者的抗 SARS-CoV-2 免疫球蛋白 G(IgG)和病毒中和抗体(VNA)。在异源(n=30 和 42)或同源加强接种(AZD1222/AZD1222,n=8/9;BNT162b2/BNT162b2,n=8/8)前后进行了检测。在第二次免疫接种后,还对 26 名年龄和性别匹配的血清样本(AZD1222/mRNA,n=9;AZD1222/AZD1222,n=9;BNT162b2/BNT162b2,n=8)中的一小部分进行了 cVNT 针对 VOC B.1.617.2(delta)的 VNA 检测。通过亲和力测量了 IgG 与单独的 SARS-CoV-2 抗原结合的强度。

结果:初次接种后,针对(三聚体)SARS-CoV-2 S-蛋白及其受体结合域(RBD)的 IgG 阳性率因疫苗方案和 SARS-CoV-2 抗原而异,从 55-95%(AZD1222)到 100%(BNT162b2)不等。加强接种导致 100%的血清转换和高亲和力 IgG 的出现,这些 IgG 针对 S-蛋白亚单位 1 和 RBD,以及针对 VOC B.1.1.7 的 VNA,而未检测到抗 NP IgG。三种抗 SARS-CoV-2 IgG 检测结果与针对该 VOC 的 VNA 滴度密切相关。cVNT 和 sVNT 的结果具有良好的一致性。然而,sVNT 似乎高估了非中和和弱中和的 B.1.1.7 滴度。与同源 AZD1222 方案相比,异源接种后 SARS-CoV-2 IgG 浓度和 B.1.1.7 中和滴度明显更高。如果使用 VOC B.1.617.2 作为抗原,cVNT 中测量的 VNA 滴度显著降低,并且 3 名(33.3%)载体疫苗接种者的 VNA 滴度<1:10。

结论:异源 SARS-CoV-2 疫苗接种会引起强烈的抗体反应,抗 SARS-CoV-2 IgG 浓度和 VNA 滴度达到与同源 BNT162b2 接种方案相当的水平。无论选择何种免疫接种方案,在第二次疫苗接种后仅 2 周即可检测到高度亲和的 IgG 抗体,表明已产生强大的体液免疫。在 26 名个体的亚组中观察到针对 VOC B.1.617.2 的 VNA 滴度降低非常显著,证实了 delta 变异体的免疫逃逸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/2caa14720642/12916_2021_2231_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/6a43e925fec4/12916_2021_2231_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/09b52f181a8b/12916_2021_2231_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/cab176b8a923/12916_2021_2231_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/60a932e9345c/12916_2021_2231_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/7ecb9bdaf326/12916_2021_2231_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/2caa14720642/12916_2021_2231_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/6a43e925fec4/12916_2021_2231_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/09b52f181a8b/12916_2021_2231_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/cab176b8a923/12916_2021_2231_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/60a932e9345c/12916_2021_2231_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/7ecb9bdaf326/12916_2021_2231_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346d/8780390/2caa14720642/12916_2021_2231_Fig6_HTML.jpg

相似文献

[1]
Humoral immune response after different SARS-CoV-2 vaccination regimens.

BMC Med. 2022-1-21

[2]
Development of SARS-CoV-2 Specific IgG and Virus-Neutralizing Antibodies after Infection with Variants of Concern or Vaccination.

Vaccines (Basel). 2021-6-25

[3]
Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study.

Lancet Respir Med. 2021-11

[4]
Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study.

Lancet. 2022-2-5

[5]
Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants.

EBioMedicine. 2022-1

[6]
Interdependencies of cellular and humoral immune responses in heterologous and homologous SARS-CoV-2 vaccination.

Allergy. 2022-8

[7]
Durability of ChAdOx1 nCoV-19 (AZD1222) vaccine and hybrid humoral immunity against variants including omicron BA.1 and BA.4 6 months after vaccination (COV005): a post-hoc analysis of a randomised, phase 1b-2a trial.

Lancet Infect Dis. 2023-3

[8]
Real-world serological responses to extended-interval and heterologous COVID-19 mRNA vaccination in frail, older people (UNCoVER): an interim report from a prospective observational cohort study.

Lancet Healthy Longev. 2022-3

[9]
COVID-19 lateral flow IgG seropositivity and serum neutralising antibody responses after primary and booster vaccinations in Chile: a cross-sectional study.

Lancet Microbe. 2023-3

[10]
A heterologous AZD1222 priming and BNT162b2 boosting regimen more efficiently elicits neutralizing antibodies, but not memory T cells, than the homologous BNT162b2 regimen.

Vaccine. 2023-3-3

引用本文的文献

[1]
Adverse events associated with AstraZeneca COVID-19 vaccine among adults in Greater Kampala, Uganda: a cross-sectional study.

Afr Health Sci. 2024-6

[2]
Differential reactivity of SARS-CoV-2 S-protein T-cell epitopes in vaccinated versus naturally infected individuals.

Clin Transl Immunology. 2025-5-6

[3]
Mechanistic models of humoral kinetics following COVID-19 vaccination.

J R Soc Interface. 2025-1

[4]
Longitudinal analysis of SARS-CoV-2 IgG antibody durability in Puerto Rico.

Sci Rep. 2024-12-28

[5]
Greater preservation of SARS-CoV-2 neutralising antibody responses following the ChAdOx1-S (AZD1222) vaccine compared with mRNA vaccines in haematopoietic cell transplant recipients.

Br J Haematol. 2024-12

[6]
Longitudinal Evaluation of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Immunity Over 2 Years Following Vaccination and Infection.

J Infect Dis. 2024-9-23

[7]
Immunogenicity Assessment of the SARS-CoV-2 Protein Subunit Recombinant Vaccine (CoV2-IB 0322) in a Substudy of a Phase 3 Trial in Indonesia.

Vaccines (Basel). 2024-4-1

[8]
Whole Blood as a Sample Matrix in Homogeneous Time-Resolved Assay-Förster Resonance Energy Transfer-Based Antibody Detection.

Diagnostics (Basel). 2024-3-29

[9]
The varying extent of humoral and cellular immune responses to either vector- or RNA-based SARS-CoV-2 vaccines persists for at least 18 months and is independent of infection.

J Virol. 2024-4-16

[10]
Vaccine-induced SARS-CoV-2 antibody response: the comparability of S1-specific binding assays depends on epitope and isotype discrimination.

Front Immunol. 2023

本文引用的文献

[1]
Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants.

EBioMedicine. 2022-1

[2]
Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study.

Lancet Respir Med. 2021-11

[3]
Vaccination versus infection with SARS-CoV-2: Establishment of a high avidity IgG response versus incomplete avidity maturation.

J Med Virol. 2021-12

[4]
Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial.

Lancet. 2021-9-4

[5]
Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination.

Nat Med. 2021-9

[6]
Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination.

Nat Med. 2021-9

[7]
Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination.

N Engl J Med. 2021-9-9

[8]
Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization.

Nature. 2021-8

[9]
Immunological mechanisms of vaccine-induced protection against COVID-19 in humans.

Nat Rev Immunol. 2021-8

[10]
Evidence for antibody as a protective correlate for COVID-19 vaccines.

Vaccine. 2021-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索