Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
J Am Chem Soc. 2022 Feb 2;144(4):2002-2009. doi: 10.1021/jacs.1c13250. Epub 2022 Jan 21.
The nature of electron transfer across metal oxide-water interfaces depends significantly on the band gap of the oxide and its band edge energies relative to the potentials of relevant aqueous redox couples. Here we focus on the water interface with MgO, a prototypical wide band gap oxide whose conduction band edge is close in energy to that of water. We investigate the behavior of an excess electron at and out of equilibrium near the interface using molecular dynamics based on hybrid density functional theory. Our simulations show that under equilibrium conditions the excess electron (donated by an Al impurity in MgO) localizes to a midgap defect state comparable in energy and shape to a hydrated electron in bulk water. To characterize the electron transfer from the conduction band of MgO to interfacial product states, we dope near-equilibrium configurations of the pristine MgO-water system with Al and run short trajectories of these instantaneously out-of-equilibrium systems. We observe two distinct products associated with the excess electron: a surface-localized electron () and an aqueous hydrogen radical (H). The H pathway exhibits a much higher activation barrier despite being more exoergic, making e the kinetic product. Our characterization of the pathways on the basis of Marcus theory is consistent with the poor observed utility of MgO for water radiolysis. Moreover, we anticipate that the computational framework employed here will be broadly applicable to assessing electron transfer mechanisms at aqueous, photocatalytic interfaces.
在金属氧化物-水界面上,电子转移的性质在很大程度上取决于氧化物的能带隙及其能带边缘能量相对于相关水相氧化还原对的电势。在这里,我们专注于具有 MgO 的水界面,MgO 是一种典型的宽带隙氧化物,其导带边缘的能量与水的导带边缘接近。我们使用基于杂化密度泛函理论的分子动力学研究了界面处和非平衡时过剩电子的行为。我们的模拟表明,在平衡条件下,过剩电子(由 MgO 中的 Al 杂质提供)定域在一个中间隙缺陷态,其能量和形状与体相水中的水合电子相当。为了表征从 MgO 的导带到界面产物态的电子转移,我们用 Al 掺杂原始 MgO-水体系的近平衡构型,并对这些瞬间非平衡体系进行短轨迹运行。我们观察到与过剩电子相关的两个不同产物:表面定域电子()和水合氢自由基(H)。尽管 H 途径的反应能更高,但由于其活化能垒较高,因此 H 途径不是动力学产物。我们基于 Marcus 理论对途径的表征与 MgO 对水辐射分解的实际应用效率低的观察结果一致。此外,我们预计这里采用的计算框架将广泛适用于评估水相、光催化界面上的电子转移机制。