Suppr超能文献

机器学习方法预测住院患者艰难梭菌感染的比较分析。

A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients.

机构信息

Dascena, Inc., Houston, TX.

Dascena, Inc., Houston, TX.

出版信息

Am J Infect Control. 2022 Mar;50(3):250-257. doi: 10.1016/j.ajic.2021.11.012. Epub 2022 Jan 20.

Abstract

BACKGROUND

Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending.

METHODS

We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios.

RESULTS

The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.

CONCLUSIONS

MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures.

摘要

背景

干预措施可以更好地预防或管理艰难梭菌感染(CDI),从而显著降低发病率、死亡率和医疗保健支出。

方法

我们使用来自 700 多家美国医院的电子健康记录数据进行回顾性研究。使用一部分医院来开发机器学习算法(MLA);其余医院作为外部测试集。评估了三种 MLA:梯度提升决策树(XGBoost)、深度长短期记忆神经网络和一维卷积神经网络。通过接受者操作特征曲线下的面积(AUROC)、敏感性、特异性、诊断优势比和似然比来评估 MLA 的性能。

结果

开发数据集包含 13664840 次住院患者就诊,其中 80046 次为 CDI 就诊;外部数据集包含 1149088 次住院患者就诊,其中 7107 次为 CDI 就诊。通过避免使用专门的训练技术、单独重采样、重采样和输出偏置相结合,XGB、深度长短期记忆神经网络和一维卷积神经网络分别获得了最高的 AUROC。XGBoost 实现了最高的 AUROC。

结论

MLA 可以仅使用 6 小时的数据预测住院患者未来的 CDI。在临床实践中,基于机器学习的工具可能支持预防措施、更早的诊断和更及时地实施感染控制措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验