Suppr超能文献

NMT头皮脑电图数据集:一个用于预测建模的健康和病理性脑电图记录的开源注释数据集。

The NMT Scalp EEG Dataset: An Open-Source Annotated Dataset of Healthy and Pathological EEG Recordings for Predictive Modeling.

作者信息

Khan Hassan Aqeel, Ul Ain Rahat, Kamboh Awais Mehmood, Butt Hammad Tanveer, Shafait Saima, Alamgir Wasim, Stricker Didier, Shafait Faisal

机构信息

College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia.

School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad, Pakistan.

出版信息

Front Neurosci. 2022 Jan 5;15:755817. doi: 10.3389/fnins.2021.755817. eCollection 2021.

Abstract

Electroencephalogram (EEG) is widely used for the diagnosis of neurological conditions like epilepsy, neurodegenerative illnesses and sleep related disorders. Proper interpretation of EEG recordings requires the expertise of trained neurologists, a resource which is scarce in the developing world. Neurologists spend a significant portion of their time sifting through EEG recordings looking for abnormalities. Most recordings turn out to be completely normal, owing to the low yield of EEG tests. To minimize such wastage of time and effort, automatic algorithms could be used to provide pre-diagnostic screening to separate normal from abnormal EEG. Data driven machine learning offers a way forward however, design and verification of modern machine learning algorithms require properly curated labeled datasets. To avoid bias, deep learning based methods must be trained on large datasets from diverse sources. This work presents a new open-source dataset, named the NMT Scalp EEG Dataset, consisting of 2,417 recordings from unique participants spanning almost 625 h. Each recording is labeled as normal or abnormal by a team of qualified neurologists. Demographic information such as gender and age of the patient are also included. Our dataset focuses on the South Asian population. Several existing state-of-the-art deep learning architectures developed for pre-diagnostic screening of EEG are implemented and evaluated on the NMT, and referenced against baseline performance on the well-known Temple University Hospital EEG Abnormal Corpus. Generalization of deep learning based architectures across the NMT and the reference datasets is also investigated. The NMT dataset is being released to increase the diversity of EEG datasets and to overcome the scarcity of accurately annotated publicly available datasets for EEG research.

摘要

脑电图(EEG)被广泛用于诊断癫痫、神经退行性疾病和睡眠相关障碍等神经系统疾病。正确解读脑电图记录需要训练有素的神经科医生的专业知识,而在发展中世界,这一资源十分稀缺。神经科医生花费大量时间仔细查看脑电图记录以寻找异常情况。由于脑电图测试的阳性率较低,大多数记录结果完全正常。为了尽量减少这种时间和精力的浪费,可以使用自动算法进行预诊断筛查,以区分正常和异常脑电图。数据驱动的机器学习提供了一条前进的道路,然而,现代机器学习算法的设计和验证需要经过适当整理的标记数据集。为避免偏差,基于深度学习的方法必须在来自不同来源的大型数据集上进行训练。这项工作提出了一个新的开源数据集,名为NMT头皮脑电图数据集,它由来自不同参与者的2417份记录组成,时长近625小时。每份记录都由一组合格的神经科医生标记为正常或异常。还包括患者的性别和年龄等人口统计学信息。我们的数据集聚焦于南亚人群。在NMT数据集上实现并评估了几种现有的用于脑电图预诊断筛查的先进深度学习架构,并与著名的坦普尔大学医院脑电图异常语料库的基线性能进行了对比。还研究了基于深度学习的架构在NMT数据集和参考数据集上的泛化能力。发布NMT数据集是为了增加脑电图数据集的多样性,并克服脑电图研究中准确标注的公开可用数据集稀缺的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b733/8766964/f83446f285a6/fnins-15-755817-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验