Department of Electrical and Electronic EngineeringImperial College London SW7 2BT London U.K.
U.K. Dementia Research Institute, Care Research and Technology Centre SW7 2BT London U.K.
IEEE J Transl Eng Health Med. 2024 Apr 17;12:448-456. doi: 10.1109/JTEHM.2024.3388852. eCollection 2024.
Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.
The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches.
Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen's kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.
Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.
An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.
睡眠监测广泛利用头皮采集的脑电图 (EEG) 数据,产生了非常庞大的数据存储库和经过良好训练的分析模型。然而,对于新兴的、侵入性较小的模式,如耳 EEG,这种丰富的数据却缺乏。
本研究旨在利用大量开源头皮 EEG 数据集,通过直接或最小限度的微调应用在数据上预先训练的模型;这是在我们之前的工作中描述的使用单个入耳式电极、参考同侧乳突记录的耳 EEG 数据进行有效睡眠分析的背景下实现的。与之前的研究不同,我们的研究独特地关注于较年长的队列(17 名年龄在 65-83 岁之间的受试者,平均年龄为 71.8 岁,其中一些人有健康状况),并采用 LightGBM 进行迁移学习,与之前的深度学习方法不同。
结果表明,预训练模型在耳 EEG 上的初始准确性为 70.1%,但通过耳 EEG 数据对模型进行微调可以将其分类准确性提高到 73.7%。在 13 名参与者中的 10 名中,经过微调的模型显示出统计学上的显著改善(p<0.05,依赖 t 检验),反映在自动和专家睡眠阶段分类之间的增强平均 Cohen's kappa 评分(用于分类项目的观察者间一致性的统计度量)为 0.639。与之前的研究相比,使用基于特征的迁移学习方法可以提高模型在耳 EEG 数据上的分类准确性,特别是在较年长的人群中。
我们的研究结果强调了在耳 EEG 数据上微调预先训练的头皮 EEG 模型以提高分类准确性的潜力,特别是在较年长的人群中,并使用基于特征的迁移学习方法。这种方法为睡眠研究中的耳 EEG 分析提供了一种很有前途的途径,为不同人群和计算技术的迁移学习应用提供了新的见解。
改进后的耳 EEG 方法在远程监测环境中可能具有重要意义,可以在患有痴呆或睡眠呼吸暂停等疾病的老年患者中进行连续、非侵入性的睡眠质量评估。