Suppr超能文献

从头皮到耳朵-EEG:一种适用于老年人自动睡眠评分的可推广迁移学习模型。

From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People.

机构信息

Department of Electrical and Electronic EngineeringImperial College London SW7 2BT London U.K.

U.K. Dementia Research Institute, Care Research and Technology Centre SW7 2BT London U.K.

出版信息

IEEE J Transl Eng Health Med. 2024 Apr 17;12:448-456. doi: 10.1109/JTEHM.2024.3388852. eCollection 2024.

Abstract

OBJECTIVE

Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.

METHODS AND PROCEDURES

The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches.

RESULTS

Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen's kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.

CONCLUSION

Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.

CLINICAL IMPACT

An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.

摘要

目的

睡眠监测广泛利用头皮采集的脑电图 (EEG) 数据,产生了非常庞大的数据存储库和经过良好训练的分析模型。然而,对于新兴的、侵入性较小的模式,如耳 EEG,这种丰富的数据却缺乏。

方法和程序

本研究旨在利用大量开源头皮 EEG 数据集,通过直接或最小限度的微调应用在数据上预先训练的模型;这是在我们之前的工作中描述的使用单个入耳式电极、参考同侧乳突记录的耳 EEG 数据进行有效睡眠分析的背景下实现的。与之前的研究不同,我们的研究独特地关注于较年长的队列(17 名年龄在 65-83 岁之间的受试者,平均年龄为 71.8 岁,其中一些人有健康状况),并采用 LightGBM 进行迁移学习,与之前的深度学习方法不同。

结果

结果表明,预训练模型在耳 EEG 上的初始准确性为 70.1%,但通过耳 EEG 数据对模型进行微调可以将其分类准确性提高到 73.7%。在 13 名参与者中的 10 名中,经过微调的模型显示出统计学上的显著改善(p<0.05,依赖 t 检验),反映在自动和专家睡眠阶段分类之间的增强平均 Cohen's kappa 评分(用于分类项目的观察者间一致性的统计度量)为 0.639。与之前的研究相比,使用基于特征的迁移学习方法可以提高模型在耳 EEG 数据上的分类准确性,特别是在较年长的人群中。

结论

我们的研究结果强调了在耳 EEG 数据上微调预先训练的头皮 EEG 模型以提高分类准确性的潜力,特别是在较年长的人群中,并使用基于特征的迁移学习方法。这种方法为睡眠研究中的耳 EEG 分析提供了一种很有前途的途径,为不同人群和计算技术的迁移学习应用提供了新的见解。

临床影响

改进后的耳 EEG 方法在远程监测环境中可能具有重要意义,可以在患有痴呆或睡眠呼吸暂停等疾病的老年患者中进行连续、非侵入性的睡眠质量评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验