Translational Neurotechnology Lab, Epilepsy Center, Medical Center - University of Freiburg, Engelberger Str. 21, Freiburg, 79106, Germany.
BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 79, Freiburg, 79110, Germany.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc.
深度学习卷积神经网络(深度卷积神经网络)通过端到端学习彻底改变了计算机视觉,也就是说,从原始数据中学习。人们越来越有兴趣使用深度卷积神经网络进行端到端 EEG 分析,但仍需要更好地理解如何为端到端 EEG 解码设计和训练卷积神经网络,以及如何可视化卷积神经网络学习的信息丰富的 EEG 特征。在这里,我们研究了具有多种不同架构的深度卷积神经网络,这些网络专为从原始 EEG 解码想象或执行的任务而设计。我们的结果表明,机器学习领域的最新进展,包括批量归一化和指数线性单元,以及裁剪训练策略,提高了深度卷积神经网络的解码性能,至少达到了广泛使用的滤波器组空间模式(FBCSP)算法的性能(平均解码精度 FBCSP 为 82.1%,深度卷积神经网络为 84.0%)。虽然 FBCSP 旨在使用频谱功率调制,但卷积神经网络使用的特征不是预先固定的。我们用于可视化学习特征的新方法表明,卷积神经网络确实学会了在 alpha、beta 和高 gamma 频率下使用频谱功率调制,并通过揭示不同频带特征对解码决策的因果贡献的地形,证明了对空间映射学习特征的有用性。因此,我们的研究表明如何设计和训练卷积神经网络,无需手工制作特征即可从原始 EEG 中解码与任务相关的信息,并强调了将深度卷积神经网络与先进的可视化技术相结合用于基于 EEG 的大脑映射的潜力。《人类大脑图谱》38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc.