Herbers Patrick, Calvo Iago, Diaz-Pier Sandra, Robles Oscar D, Mata Susana, Toharia Pablo, Pastor Luis, Peyser Alexander, Morrison Abigail, Klijn Wouter
Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.
Department of Computer Science and Computer Architecture, Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain.
Front Neuroinform. 2022 Jan 7;15:766697. doi: 10.3389/fninf.2021.766697. eCollection 2021.
An open challenge on the road to unraveling the brain's multilevel organization is establishing techniques to research connectivity and dynamics at different scales in time and space, as well as the links between them. This work focuses on the design of a framework that facilitates the generation of multiscale connectivity in large neural networks using a symbolic visual language capable of representing the model at different structural levels-ConGen. This symbolic language allows researchers to create and visually analyze the generated networks independently of the simulator to be used, since the visual model is translated into a simulator-independent language. The simplicity of the front end visual representation, together with the simulator independence provided by the back end translation, combine into a framework to enhance collaboration among scientists with expertise at different scales of abstraction and from different fields. On the basis of two use cases, we introduce the features and possibilities of our proposed visual language and associated workflow. We demonstrate that ConGen enables the creation, editing, and visualization of multiscale biological neural networks and provides a whole workflow to produce simulation scripts from the visual representation of the model.
在揭示大脑多层次组织的道路上,一个公开的挑战是建立能够在不同时空尺度上研究连通性和动力学以及它们之间联系的技术。这项工作聚焦于设计一个框架,该框架利用一种能够在不同结构层次上表示模型的符号视觉语言——ConGen,来促进大型神经网络中多尺度连通性的生成。这种符号语言使研究人员能够独立于要使用的模拟器来创建和可视化分析生成的网络,因为视觉模型会被翻译成一种与模拟器无关的语言。前端视觉表示的简单性,与后端翻译提供的模拟器独立性相结合,形成了一个框架,以加强不同抽象尺度和不同领域的专家之间的合作。基于两个用例,我们介绍了我们提出的视觉语言和相关工作流程的特点和可能性。我们证明,ConGen能够创建、编辑和可视化多尺度生物神经网络,并提供一个完整的工作流程,从模型的视觉表示生成模拟脚本。