Smith Kirk, Shen Fangzhou, Lee Ho Joon, Chandrasekaran Sriram
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Genetics, Yale University, New Haven, CT 06510, USA.
iScience. 2022 Jan 1;25(1):103730. doi: 10.1016/j.isci.2021.103730. eCollection 2022 Jan 21.
Acetylation and phosphorylation are highly conserved posttranslational modifications (PTMs) that regulate cellular metabolism, yet how metabolic control is shared between these PTMs is unknown. Here we analyze transcriptome, proteome, acetylome, and phosphoproteome datasets in , and mammalian cells across diverse conditions using CAROM, a new approach that uses genome-scale metabolic networks and machine learning to classify targets of PTMs. We built a single machine learning model that predicted targets of each PTM in a condition across all three organisms based on reaction attributes (AUC>0.8). Our model predicted phosphorylated enzymes during a mammalian cell-cycle, which we validate using phosphoproteomics. Interpreting the machine learning model using game theory uncovered enzyme properties including network connectivity, essentiality, and condition-specific factors such as maximum flux that differentiate targets of phosphorylation from acetylation. The conserved and predictable partitioning of metabolic regulation identified here between these PTMs may enable rational rewiring of regulatory circuits.
乙酰化和磷酸化是高度保守的翻译后修饰(PTM),可调节细胞代谢,但尚不清楚这些PTM之间如何共享代谢控制。在这里,我们使用CAROM分析了不同条件下酵母、拟南芥和哺乳动物细胞中的转录组、蛋白质组、乙酰化组和磷酸化蛋白质组数据集,CAROM是一种利用基因组规模代谢网络和机器学习对PTM靶标进行分类的新方法。我们构建了一个单一的机器学习模型,该模型基于反应属性预测了所有三种生物体在某一条件下每种PTM的靶标(AUC>0.8)。我们的模型预测了哺乳动物细胞周期中的磷酸化酶,我们使用磷酸化蛋白质组学对其进行了验证。使用博弈论解释机器学习模型揭示了酶的特性,包括网络连通性、必需性以及区分磷酸化靶标与乙酰化靶标的条件特异性因素,如最大通量。此处确定的这些PTM之间代谢调节的保守且可预测的划分可能有助于对调节回路进行合理的重新布线。