Lee Douglas S, Wang Chloe X, McAlister Finlay A, Ma Shihao, Chu Anna, Rochon Paula A, Kaul Padma, Austin Peter C, Wang Xuesong, Kalmady Sunil V, Udell Jacob A, Schull Michael J, Rubin Barry B, Wang Bo
ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Canada.
Division of Cardiology, Peter Munk Cardiac Centre, Cardiovascular Program, University Health Network, University of Toronto, Toronto, ON, Canada.
Lancet Reg Health Am. 2022 Feb;6:100146. doi: 10.1016/j.lana.2021.100146. Epub 2022 Jan 17.
SARS-Cov-2 infection rates are high among residents of long-term care (LTC) homes. We used machine learning to identify resident and community characteristics predictive of SARS-Cov-2 infection.
We linked 26 population-based health and administrative databases to identify the population of all LTC residents tested for SARS-Cov-2 infection in Ontario, Canada. Using ensemble-based algorithms, we examined 484 factors, including individual-level demographics, healthcare use, comorbidities, functional status, and laboratory results; and community-level characteristics to identify factors predictive of infection. Analyses were performed separately for January to April (early wave 1) and May to August (late wave 1).
Among 80,784 LTC residents, 64,757 (80.2%) were tested for SARS-Cov-2 (median age 86 (78-91) years, 30.6% male), of whom 10.2% of 33,519 and 5.2% of 31,238 tested positive in early and late wave 1, respectively. In the late phase (when restriction of visitors, closure of communal spaces, and universal masking in LTC were routine), regional-level characteristics comprised 33 of the top 50 factors associated with testing positive, while laboratory values and comorbidities were also predictive. The c-index of the final model was 0.934, and sensitivity was 0.887. In the highest versus lowest risk quartiles, the odds ratio for infection was 114.3 (95% CI 38.6-557.3). LTC-related geographic variations existed in the distribution of observed infection rates and the proportion of residents at highest risk.
Machine learning informed evaluation of predicted and observed risks of SARS-CoV-2 infection at the resident and LTC levels, and may inform initiatives to improve care quality in this setting.
Funded by a Canadian Institutes of Health Research, COVID-19 Rapid Research Funding Opportunity grant (# VR4 172736) and a Peter Munk Cardiac Centre Innovation Grant. Dr. D. Lee is the Ted Rogers Chair in Heart Function Outcomes, University Health Network, University of Toronto. Dr. Austin is supported by a Mid-Career investigator award from the Heart and Stroke Foundation. Dr. McAlister is supported by an Alberta Health Services Chair in Cardiovascular Outcomes Research. Dr. Kaul is the CIHR Sex and Gender Science Chair and the Heart & Stroke Chair in Cardiovascular Research. Dr. Rochon holds the RTO/ERO Chair in Geriatric Medicine from the University of Toronto. Dr. B. Wang holds a CIFAR AI chair at the Vector Institute.
在长期护理(LTC)机构的居民中,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染率很高。我们使用机器学习来识别可预测SARS-CoV-2感染的居民和社区特征。
我们将26个基于人群的健康和行政数据库相链接,以确定加拿大安大略省所有接受SARS-CoV-2感染检测的长期护理机构居民人群。使用基于集成的算法,我们检查了484个因素,包括个体层面的人口统计学特征、医疗保健使用情况、合并症、功能状态和实验室检查结果;以及社区层面的特征,以识别可预测感染的因素。分别对1月至4月(第一波早期)和5月至8月(第一波后期)进行了分析。
在80784名长期护理机构居民中,64757人(80.2%)接受了SARS-CoV-2检测(中位年龄86岁(78-91岁),男性占30.6%),其中在第一波早期接受检测的33519人中,10.2%检测呈阳性,在第一波后期接受检测的31238人中,5.2%检测呈阳性。在后期(当限制访客、关闭公共空间以及在长期护理机构普遍佩戴口罩成为常规措施时),地区层面的特征在与检测呈阳性相关的前50个因素中占33个,同时实验室检查值和合并症也具有预测性。最终模型的c指数为0.934,敏感性为0.887。在最高风险四分位数与最低风险四分位数之间,感染的优势比为114.3(95%置信区间38.6-557.3)。观察到的感染率分布以及最高风险居民比例在长期护理机构相关的地理区域存在差异。
机器学习有助于评估居民和长期护理机构层面SARS-CoV-2感染的预测风险和观察到的风险,并可为改善该环境下护理质量的举措提供参考。
由加拿大卫生研究院COVID-19快速研究资助机会基金(#VR4 172736)和彼得·芒克心脏中心创新基金资助。D. 李博士是多伦多大学大学健康网络心脏功能结局泰德·罗杰斯主席。奥斯汀博士获得了心脏与中风基金会的职业生涯中期研究者奖。麦卡利斯特博士获得了阿尔伯塔卫生服务心血管结局研究主席职位的支持。考尔博士是加拿大卫生研究院性别与性别科学主席以及心血管研究心脏与中风主席。罗尚博士担任多伦多大学老年医学RTO/ERO主席。B. 王博士在向量研究所担任CIFAR人工智能主席。