Suppr超能文献

BWGAN-GP:一种用于 RSVP 任务中类不平衡问题的 EEG 数据生成方法。

BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:251-263. doi: 10.1109/TNSRE.2022.3145515. Epub 2022 Feb 2.

Abstract

In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.

摘要

在快速序列视觉呈现 (RSVP) 分类任务中,目标类和非目标类的数据极不平衡。这些类别不平衡问题 (CIP) 可能会阻碍分类器获得更好的性能,尤其是在深度学习中。本文提出了一种新的数据增强方法,称为具有梯度惩罚的平衡 Wasserstein 生成对抗网络 (BWGAN-GP),用于生成 RSVP 少数类数据。该模型从多数类中学习有用的特征,并将其用于生成少数类人工 EEG 数据。它将生成对抗网络 (GAN) 与自动编码器初始化策略相结合,使该方法能够在潜在空间中学习到准确的类别条件,从而驱动生成过程向少数类发展。我们使用来自九个受试者的 RSVP 数据集来评估我们提出的生成模型的分类性能,并将其与其他方法进行比较。在 EEGNet 上,BWGAN-GP 的平均 AUC 为 94.43%,比原始数据提高了 3.7%。我们还使用了不同数量的原始数据来研究生成 EEG 数据对校准阶段的影响。仅使用 60%的原始数据就可以获得可接受的分类性能。这些结果表明,BWGAN-GP 可以有效地减轻 RSVP 任务中的 CIP,并在两类数据平衡时获得最佳性能。研究结果表明,数据增强技术可以生成人工 EEG,从而减少类似 RSVP 的其他脑机接口 (BCI) 范式中的校准时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验