Suppr超能文献

尿蛋白质组学用于非侵入性监测支气管肺发育不良的生物标志物。

Urine Proteomics for Noninvasive Monitoring of Biomarkers in Bronchopulmonary Dysplasia.

机构信息

Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA,

Department of Pediatrics, Precision Vaccines Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Neonatology. 2022;119(2):193-203. doi: 10.1159/000520680. Epub 2022 Jan 24.

Abstract

INTRODUCTION

Current techniques to diagnose and/or monitor critically ill neonates with bronchopulmonary dysplasia (BPD) require invasive sampling of body fluids, which is suboptimal in these frail neonates. We tested our hypothesis that it is feasible to use noninvasively collected urine samples for proteomics from extremely low gestational age newborns (ELGANs) at risk for BPD to confirm previously identified proteins and biomarkers associated with BPD.

METHODS

We developed a robust high-throughput urine proteomics methodology that requires only 50 μL of urine. We utilized the methodology with a proof-of-concept study validating proteins previously identified in invasively collected sample types such as blood and/or tracheal aspirates on urine collected within 72 h of birth from ELGANs (gestational age [26 ± 1.2] weeks) who were admitted to a single Neonatal Intensive Care Unit (NICU), half of whom eventually developed BPD (n = 21), while the other half served as controls (n = 21).

RESULTS

Our high-throughput urine proteomics approach clearly identified several BPD-associated changes in the urine proteome recapitulating expected blood proteome changes, and several urinary proteins predicted BPD risk. Interestingly, 16 of the identified urinary proteins are known targets of drugs approved by the Food and Drug Administration.

CONCLUSION

In addition to validating numerous proteins, previously found in invasively collected blood, tracheal aspirate, and bronchoalveolar lavage, that have been implicated in BPD pathophysiology, urine proteomics also suggested novel potential therapeutic targets. Ease of access to urine could allow for sequential proteomic evaluations for longitudinal monitoring of disease progression and impact of therapeutic intervention in future studies.

摘要

简介

目前诊断和/或监测患有支气管肺发育不良(BPD)的危重新生儿的技术需要对体液进行有创采样,而这在这些脆弱的新生儿中并不理想。我们验证了一个假设,即使用从有发生 BPD 风险的极低出生体重儿(ELGAN)收集的非侵入性尿液样本进行蛋白质组学分析是可行的,以确认与 BPD 相关的先前鉴定的蛋白质和生物标志物。

方法

我们开发了一种稳健的高通量尿液蛋白质组学方法,仅需要 50μL 的尿液。我们使用该方法进行了概念验证研究,验证了先前在侵入性采集的样本类型(如血液和/或气管吸出物)中鉴定的蛋白质,这些样本是在出生后 72 小时内从被收入单个新生儿重症监护病房(NICU)的 ELGAN (胎龄[26±1.2]周)收集的,其中一半最终发生了 BPD(n=21),而另一半作为对照(n=21)。

结果

我们的高通量尿液蛋白质组学方法清楚地识别了尿液蛋白质组中与 BPD 相关的几种变化,这些变化与预期的血液蛋白质组变化相一致,并且几种尿蛋白可预测 BPD 风险。有趣的是,鉴定出的 16 种尿液蛋白是食品和药物管理局批准的药物的已知靶标。

结论

除了验证先前在侵入性采集的血液、气管吸出物和支气管肺泡灌洗液中发现的与 BPD 病理生理学有关的大量蛋白质外,尿液蛋白质组学还提示了新的潜在治疗靶标。易于获取尿液可以允许进行连续的蛋白质组学评估,以便在未来的研究中对疾病进展和治疗干预的影响进行纵向监测。

相似文献

1
Urine Proteomics for Noninvasive Monitoring of Biomarkers in Bronchopulmonary Dysplasia.
Neonatology. 2022;119(2):193-203. doi: 10.1159/000520680. Epub 2022 Jan 24.
2
Proteomics-Based Mapping of Bronchopulmonary Dysplasia-Associated Changes in Noninvasively Accessible Oral Secretions.
J Pediatr. 2024 Jul;270:113774. doi: 10.1016/j.jpeds.2023.113774. Epub 2023 Oct 13.
3
Validation of disease-specific biomarkers for the early detection of bronchopulmonary dysplasia.
Pediatr Res. 2023 Feb;93(3):625-632. doi: 10.1038/s41390-022-02093-w. Epub 2022 May 20.
4
Urinary metabolomics of bronchopulmonary dysplasia (BPD): preliminary data at birth suggest it is a congenital disease.
J Matern Fetal Neonatal Med. 2014 Oct;27 Suppl 2:39-45. doi: 10.3109/14767058.2014.955966.
7
Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics.
Metabolomics. 2019 Feb 2;15(2):20. doi: 10.1007/s11306-019-1482-9.
8
Exploring clinical, echocardiographic and molecular biomarkers to predict bronchopulmonary dysplasia.
PLoS One. 2019 Mar 6;14(3):e0213210. doi: 10.1371/journal.pone.0213210. eCollection 2019.
9
N-Terminal Pro-B Type Natriuretic Peptide as a Marker of Bronchopulmonary Dysplasia or Death in Very Preterm Neonates: A Cohort Study.
PLoS One. 2015 Oct 9;10(10):e0140079. doi: 10.1371/journal.pone.0140079. eCollection 2015.
10
New insights into the natural history of bronchopulmonary dysplasia from proteomics and multiplexed immunohistochemistry.
Am J Physiol Lung Cell Mol Physiol. 2023 Oct 1;325(4):L419-L433. doi: 10.1152/ajplung.00130.2023. Epub 2023 Jul 25.

引用本文的文献

2
Preterm functional outcomes are reflected in early postnatal proteome changes.
Pediatr Res. 2025 Jul 17. doi: 10.1038/s41390-025-04227-2.
3
Mass-spectrometry-based proteomics: from single cells to clinical applications.
Nature. 2025 Feb;638(8052):901-911. doi: 10.1038/s41586-025-08584-0. Epub 2025 Feb 26.
4
Current status and future directions of application of urine proteomics in neonatology.
Front Pediatr. 2025 Jan 14;12:1509468. doi: 10.3389/fped.2024.1509468. eCollection 2024.
6
Predictive analytics in bronchopulmonary dysplasia: past, present, and future.
Front Pediatr. 2024 Nov 20;12:1483940. doi: 10.3389/fped.2024.1483940. eCollection 2024.
7
Bioinformatics in Neonatal/Pediatric Medicine-A Literature Review.
J Pers Med. 2024 Jul 18;14(7):767. doi: 10.3390/jpm14070767.
9
Recent progress in mass spectrometry-based urinary proteomics.
Clin Proteomics. 2024 Feb 22;21(1):14. doi: 10.1186/s12014-024-09462-z.
10
Stratification of neurogenic bladder risk in spina bifida using the urinary peptidome.
Am J Physiol Renal Physiol. 2024 Feb 1;326(2):F241-F248. doi: 10.1152/ajprenal.00267.2023. Epub 2023 Nov 2.

本文引用的文献

1
Survival without Bronchopulmonary Dysplasia of Extremely Preterm Infants: A Predictive Model at Birth.
Neonatology. 2021;118(4):385-393. doi: 10.1159/000515898. Epub 2021 May 18.
2
Lymphocyte-Specific Biomarkers Associated With Preterm Birth and Bronchopulmonary Dysplasia.
Front Immunol. 2021 Jan 21;11:563473. doi: 10.3389/fimmu.2020.563473. eCollection 2020.
5
Global incidence of bronchopulmonary dysplasia among extremely preterm infants: a systematic literature review.
J Matern Fetal Neonatal Med. 2021 Jun;34(11):1721-1731. doi: 10.1080/14767058.2019.1646240. Epub 2019 Aug 9.
7
Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung.
Cell. 2019 Jan 10;176(1-2):113-126.e15. doi: 10.1016/j.cell.2018.12.002.
8
Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia.
Semin Perinatol. 2018 Nov;42(7):425-431. doi: 10.1053/j.semperi.2018.09.004. Epub 2018 Oct 2.
9
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
10
Plasma proteome changes in cord blood samples from preterm infants.
J Perinatol. 2018 Sep;38(9):1182-1189. doi: 10.1038/s41372-018-0150-7. Epub 2018 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验