Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2100679119.
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
细胞间张力的增加与细胞增殖和组织生长增强有关。在这里,我们提出了一种力转导机制的证据,该机制将上皮细胞(E)-钙粘蛋白(CDH1)受体的机械扰动与表皮生长因子受体(EGFR,ERBB1)的力依赖性激活联系起来,EGFR 是细胞增殖的关键调节因子。在这里,共免疫沉淀研究首先表明,E-钙粘蛋白和 EGFR 在质膜上形成复合物,表皮生长因子(EGF)或同源 E-钙粘蛋白键的张力增加均可破坏该复合物。尽管 E-cadherin 键上的力在没有 EGF 的情况下破坏了复合物,但可溶性 EGF 是在钙粘蛋白黏附中机械激活 EGFR 所必需的。完全量化的光谱成像荧光共振能量转移进一步表明,E-钙粘蛋白和 EGFR 直接相互作用,形成由两个钙粘蛋白和一个 EGFR 蛋白组成的异三聚体复合物。总之,这些结果支持了这样一种模型,即同型 E-钙粘蛋白键上的牵拉力通过释放 EGFR 单体使其二聚化、结合 EGF 配体并发出信号,从而触发力激活信号。这些发现揭示了 E-钙粘蛋白介导的力转导的初始步骤,该步骤将细胞间力波动与生长调节信号级联的激活直接联系起来。
Proc Natl Acad Sci U S A. 2022-1-25
Curr Opin Cell Biol. 2025-8
ACS Appl Mater Interfaces. 2024-5-1
PNAS Nexus. 2024-1-25
Cell Mol Life Sci. 2023-11-10
Proc Natl Acad Sci U S A. 2020-12-8
J Biol Chem. 2020-9-18
J Cell Sci. 2019-2-25
Biophys J. 2018-8-4
J Cell Sci. 2018-3-2
J Cell Sci. 2017-9-18
Biophys J. 2017-9-19