Suppr超能文献

窥视黑箱:MIMIC-III 基准测试模型的公平性和泛化能力

Peeking into a black box, the fairness and generalizability of a MIMIC-III benchmarking model.

机构信息

School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

Department of Medicine (Biomedical Informatics), Stanford University, Stanford, CA, USA.

出版信息

Sci Data. 2022 Jan 24;9(1):24. doi: 10.1038/s41597-021-01110-7.

Abstract

As artificial intelligence (AI) makes continuous progress to improve quality of care for some patients by leveraging ever increasing amounts of digital health data, others are left behind. Empirical evaluation studies are required to keep biased AI models from reinforcing systemic health disparities faced by minority populations through dangerous feedback loops. The aim of this study is to raise broad awareness of the pervasive challenges around bias and fairness in risk prediction models. We performed a case study on a MIMIC-trained benchmarking model using a broadly applicable fairness and generalizability assessment framework. While open-science benchmarks are crucial to overcome many study limitations today, this case study revealed a strong class imbalance problem as well as fairness concerns for Black and publicly insured ICU patients. Therefore, we advocate for the widespread use of comprehensive fairness and performance assessment frameworks to effectively monitor and validate benchmark pipelines built on open data resources.

摘要

随着人工智能(AI)通过利用不断增加的数字健康数据持续提高某些患者的护理质量,其他人则被甩在后面。需要进行实证评估研究,以防止有偏见的 AI 模型通过危险的反馈循环加剧少数族裔群体面临的系统性健康差异。本研究旨在广泛提高对风险预测模型中偏见和公平性的普遍认识。我们使用广泛适用的公平性和可推广性评估框架对一个使用 MIMIC 进行训练的基准模型进行了案例研究。虽然开放科学基准对于克服当今许多研究局限性至关重要,但本案例研究揭示了一个严重的类别不平衡问题,以及对黑人患者和公共保险 ICU 患者的公平性问题。因此,我们主张广泛使用全面的公平性和绩效评估框架,以有效监测和验证基于开放数据资源构建的基准管道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cd/8786878/7723ea3fa736/41597_2021_1110_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验