Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA.
Appl Microbiol Biotechnol. 2022 Feb;106(3):1165-1183. doi: 10.1007/s00253-022-11789-2. Epub 2022 Jan 27.
Glycosylation is an effective way to increase the polarity of natural products. UDP-glucuronyltransferases (UGTs) are commonly observed and extensively studied in phase II drug metabolism. However, UGTs in microorganisms are not well studied, which hampered the utilization of this type of enzyme in microbial glucuronidation of natural products. Screening of five actinomycete strains showed that Streptomyces chromofuscus ATCC 49982 can convert diverse plant polyphenols into more polar products, which were characterized as various glucuronides based on their spectral data. Analysis of the genome of this strain revealed a putative glucuronidation gene cluster that contains a UGT gene (gcaC) and two UDP-glucuronic acid biosynthetic genes (gcaB and gcaD). The gcaC gene was cloned and heterologously expressed in Escherichia coli BL21(DE3). Incubation of the purified enzyme with resveratrol and UDP-glucuronic acid led to the production of resveratrol-4'-O-β-D-glucuronide and resveratrol-3-O-β-D-glucuronide, allowing GcaC to be characterized as a flexible UGT. The optimal in vitro reaction pH and temperature for GcaC are 7.5 and 30 °C, respectively. Its activity can be stimulated by Ca, Mg, and Mn, whereas Zn, Cu, and Fe showed inhibitory effects. Furthermore, GcaC has a broad substrate specificity, which can glucuronidate various substrates besides resveratrol, including quercetin, ferulic acid, vanillic acid, curcumin, vanillin, chrysin, zearalenone, and apigenin. The titers of resveratrol-4'-O-β-D-glucuronide and resveratrol-3-O-β-D-glucuronide in E. coli-GcaC were 78.381 ± 0.366 mg/L and 14.991 ± 0.248 mg/L from 114.125 mg/L resveratrol within 3 h. Therefore, this work provides an effective way to produce glucuronides of resveratrol and other health-benefitting natural products. KEY POINTS: • A novel versatile microbial UDP-glucuronyltransferase was discovered and characterized from Streptomyces chromofuscus ATCC 49982. • The UDP-glucuronyltransferase was expressed in Escherichia coli and can convert resveratrol into two glucuronides both in vitro and in vivo. • The UDP-glucuronyltransferase has a highly flexible substrate specificity and is an effective tool to prepare mono- or diglucuronides of bioactive molecules.
糖基化是增加天然产物极性的有效方法。UDP-葡糖醛酸基转移酶(UGTs)在药物代谢的 II 期通常被观察到,并被广泛研究。然而,微生物中的 UGTs 研究得并不充分,这阻碍了这种酶在微生物对天然产物的葡醛酸化中的利用。对 5 株放线菌菌株的筛选表明,绛红链霉菌 ATCC 49982 可以将多种植物多酚转化为极性更高的产物,根据其光谱数据将这些产物鉴定为各种葡糖苷。对该菌株基因组的分析揭示了一个可能的葡醛酸化基因簇,该基因簇包含一个 UGT 基因(gcaC)和两个 UDP-葡糖醛酸生物合成基因(gcaB 和 gcaD)。gcaC 基因被克隆并在大肠杆菌 BL21(DE3)中异源表达。将纯化的酶与白藜芦醇和 UDP-葡糖醛酸孵育,生成白藜芦醇-4'-O-β-D-葡糖苷和白藜芦醇-3-O-β-D-葡糖苷,这表明 GcaC 可以被鉴定为一种灵活的 UGT。GcaC 的最佳体外反应 pH 和温度分别为 7.5 和 30°C。Ca、Mg 和 Mn 可以刺激其活性,而 Zn、Cu 和 Fe 则表现出抑制作用。此外,GcaC 具有广泛的底物特异性,除白藜芦醇外,还可以葡醛酸化各种底物,包括槲皮素、阿魏酸、香草酸、姜黄素、香草醛、白杨素、玉米赤霉烯酮和芹菜素。在大肠杆菌-GcaC 中,白藜芦醇-4'-O-β-D-葡糖苷和白藜芦醇-3-O-β-D-葡糖苷的产量分别为 78.381±0.366mg/L 和 14.991±0.248mg/L,来自 114.125mg/L 的白藜芦醇在 3 小时内。因此,这项工作为生产白藜芦醇和其他有益健康的天然产物的葡糖苷提供了一种有效的方法。关键点:
从绛红链霉菌 ATCC 49982 中发现并鉴定了一种新型多功能微生物 UDP-葡糖醛酸基转移酶。
该 UDP-葡糖醛酸基转移酶在大肠杆菌中表达,可在体外和体内将白藜芦醇转化为两种葡糖苷。
UDP-葡糖醛酸基转移酶具有高度灵活的底物特异性,是制备生物活性分子的单或双葡糖苷的有效工具。