Suppr超能文献

多维数据中的可靠性与欧米伽层级:各种估计量的比较

Reliability and omega hierarchical in multidimensional data: A comparison of various estimators.

作者信息

Cho Eunseong

机构信息

College of Business Administration, Kwangwoon University.

出版信息

Psychol Methods. 2025 Feb;30(1):40-59. doi: 10.1037/met0000525. Epub 2022 Sep 1.

Abstract

The current guidelines for estimating reliability recommend using two omega combinations in multidimensional data. One omega is for factor analysis (FA) reliability estimators, and the other omega is for omega hierarchical estimators (i.e., ω). This study challenges these guidelines. Specifically, the following three questions are asked: (a) Do FA reliability estimators outperform non-FA reliability estimators? (b) Is it always desirable to estimate ω? (c) What are the best reliability and ω estimators? This study addresses these issues through a Monte Carlo simulation of reliability and ω estimators. The conclusions are given as follows. First, the performance differences among most reliability estimators are small, and the performance of FA estimators is comparable to that of non-FA estimators. However, the current, most-recommended estimators, that is, estimators based on the bifactor model and exploratory factor analysis, tend to overestimate reliability. Second, the accuracy of ω estimators is much lower than that of reliability estimators, so we should perform ω estimation selectively only on data that meet several requirements. Third, exploratory bifactor analysis is more accurate than confirmatory bifactor analysis only in the presence of cross-loading; otherwise, exploratory bifactor analysis is less accurate than confirmatory bifactor analysis. Fourth, techniques known to improve the Schmid-Leiman (SL) transformation are not superior to SL transformation but have different advantages. This study provides an R Shiny app that allows users to obtain multidimensional reliability and ω estimates with a few mouse clicks. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

当前用于估计信度的指南建议在多维数据中使用两种欧米伽组合。一种欧米伽用于因子分析(FA)信度估计量,另一种欧米伽用于欧米伽层次估计量(即ω)。本研究对这些指南提出了挑战。具体而言,提出了以下三个问题:(a)FA信度估计量是否优于非FA信度估计量?(b)估计ω是否总是可取的?(c)最佳的信度和ω估计量是什么?本研究通过对信度和ω估计量进行蒙特卡罗模拟来解决这些问题。得出的结论如下。首先,大多数信度估计量之间的性能差异很小,FA估计量的性能与非FA估计量相当。然而,当前最推荐的估计量,即基于双因子模型和探索性因子分析的估计量,往往会高估信度。其次,ω估计量的准确性远低于信度估计量,因此我们应该仅对满足几个要求的数据有选择地进行ω估计。第三,探索性双因子分析仅在存在交叉载荷的情况下比验证性双因子分析更准确;否则,探索性双因子分析比验证性双因子分析的准确性更低。第四,已知能改进施密德 - 莱曼(SL)变换的技术并不优于SL变换,但各有不同优势。本研究提供了一个R Shiny应用程序,用户通过点击几下鼠标就能获得多维信度和ω估计值。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验