Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.
Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.
Ann Anat. 2022 Apr;241:151894. doi: 10.1016/j.aanat.2022.151894. Epub 2022 Jan 25.
A fundamental feature in interpreting gross or neuroimaging brain anatomy is reliance on an assumed high degree of morphologic symmetry in bilateral hemispheres. However, the normal brain is not perfectly symmetrical, and subtle inherent structural asymmetries could potentially confound appreciation of pathology-induced asymmetry or how a given brain asymmetry can relate to its function.
We review the literature and provide a brief overview of structural asymmetries in normal brain anatomy.
Brain structural asymmetries are either rotational or pure right-left asymmetries, and many are a consequence of unique features linked to the use of human language. Yakovlevian torque is the tendency of the right hemisphere to rotate slightly forward relative to the left, which may make the right frontal lobe bigger and wider, and the left occipital lobe wider and protrude rightward. This makes the left Sylvian fissure longer and flatter, resulting in a larger planum temporale. We also discuss right-left asymmetries in the cortex, white matter structures, deep gray nuclei, and lateral ventricles. Brain asymmetries are not random but result from distinct patterns in structural design that confer evolutionary functional advantages.
Minor brain asymmetries are important and should be accounted for as they can be connected to function, and like individual variability, are essential for evolution. This overview will help understand structural brain asymmetries for improved diagnostic neuroimaging interpretation, constructing symmetry-based paradigms for automatic localization, segmentation of brain lesions, and as a reference for studies on possible implications of excessive asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.
在解释大体或神经影像学脑解剖结构时,一个基本特征是依赖于双侧半球形态高度对称的假设。然而,正常的大脑并不是完全对称的,潜在的细微固有结构不对称可能会混淆对病变引起的不对称的评估,或者给定的大脑不对称如何与其功能相关。
我们回顾了文献,并简要概述了正常脑解剖结构的结构不对称。
脑结构不对称要么是旋转性的,要么是纯粹的左右不对称,许多都是与人类语言使用相关的独特特征的结果。雅可夫列夫氏扭转是右半球相对于左半球略微向前旋转的趋势,这可能使右额叶更大更宽,左枕叶更宽并向右突出。这使得左侧大脑外侧裂更长更平,导致更大的颞上回。我们还讨论了皮质、白质结构、深部灰质核和侧脑室的左右不对称。脑不对称不是随机的,而是源于结构设计的独特模式,这些模式赋予了进化功能优势。
较小的脑不对称很重要,应该考虑到它们可能与功能有关,并且像个体变异性一样,对于进化至关重要。本综述将有助于理解结构脑不对称,以改善诊断神经影像学解释,构建基于对称性的自动定位、脑损伤分割范式,并作为研究认知、神经和精神障碍中过度不对称和改变偏侧性的可能影响的参考。