Suppr超能文献

基于 bulk 和单细胞转录组中通路富集分数对肉瘤进行亚型分类。

Subtyping of sarcomas based on pathway enrichment scores in bulk and single cell transcriptomes.

机构信息

Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.

Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.

出版信息

J Transl Med. 2022 Jan 29;20(1):48. doi: 10.1186/s12967-022-03248-3.

Abstract

BACKGROUND

Sarcomas are highly heterogeneous in molecular, pathologic, and clinical features. However, a classification of sarcomas by integrating different types of pathways remains mostly unexplored.

METHODS

We performed hierarchical clustering analysis of sarcomas based on the enrichment scores of 14 pathways involved in immune, stromal, DNA damage repair (DDR), and oncogenic signatures in three bulk tumor transcriptome datasets.

RESULTS

Consistently in the three datasets, sarcomas were classified into three subtypes: Immune Class (Imm-C), Stromal Class (Str-C), and DDR Class (DDR-C). Imm-C had the strongest anti-tumor immune signatures and the lowest intratumor heterogeneity (ITH); Str-C showed the strongest stromal signatures, the highest genomic stability and global methylation levels, and the lowest proliferation potential; DDR-C had the highest DDR activity, expression of the cell cycle pathway, tumor purity, stemness scores, proliferation potential, and ITH, the most frequent TP53 mutations, and the worst survival. We further validated the stability and reliability of our classification method by analyzing a single cell RNA-Seq (scRNA-seq) dataset. Based on the expression levels of five genes in the pathways of T cell receptor signaling, cell cycle, mismatch repair, focal adhesion, and calcium signaling, we built a linear risk scoring model (ICMScore) for sarcomas. We demonstrated that ICMScore was an adverse prognostic factor for sarcomas and many other cancers.

CONCLUSIONS

Our classification method provides novel insights into tumor biology and clinical implications for sarcomas.

摘要

背景

肉瘤在分子、病理和临床特征上具有高度异质性。然而,通过整合不同类型的通路对肉瘤进行分类在很大程度上仍未得到探索。

方法

我们基于三种批量肿瘤转录组数据集中涉及免疫、基质、DNA 损伤修复 (DDR) 和致癌特征的 14 种途径的富集分数,对肉瘤进行层次聚类分析。

结果

在三个数据集之间始终一致,肉瘤分为三种亚型:免疫型 (Imm-C)、基质型 (Str-C) 和 DDR 型 (DDR-C)。Imm-C 具有最强的抗肿瘤免疫特征和最低的肿瘤内异质性 (ITH);Str-C 表现出最强的基质特征、最高的基因组稳定性和全局甲基化水平以及最低的增殖潜力;DDR-C 具有最高的 DDR 活性、细胞周期途径的表达、肿瘤纯度、干性评分、增殖潜力和 ITH,最频繁的 TP53 突变以及最差的生存。我们通过分析单细胞 RNA-Seq(scRNA-seq) 数据集进一步验证了我们分类方法的稳定性和可靠性。基于 T 细胞受体信号、细胞周期、错配修复、黏附斑和钙信号途径中五个基因的表达水平,我们为肉瘤构建了一个线性风险评分模型 (ICMScore)。我们证明 ICMScore 是肉瘤和许多其他癌症的不良预后因素。

结论

我们的分类方法为肿瘤生物学提供了新的见解,并对肉瘤具有临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2664/8800234/9ec8ae332a78/12967_2022_3248_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验