Russo Maria, Cejas Cesare M, Pitingolo Gabriele
Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
Prog Mol Biol Transl Sci. 2022;187(1):163-204. doi: 10.1016/bs.pmbts.2021.07.022. Epub 2021 Sep 21.
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
由于临床前研究缺乏可靠性,药物研发通常是一个漫长、昂贵且具有风险的过程。当前传统的临床前模型大多基于二维细胞培养和动物试验,无法充分代表体内复杂的微环境,且常常失败。为了降低巨大的经济成本和整体健康成本,需要一个更具预测性的临床前模型。在本章中,我们回顾了微流控三维细胞培养的最新进展,展示了其发展如何推动了体外微生理系统的引入,为芯片器官技术奠定了基础。这些发现为众多临床前药物发现试验提供了依据,基于二维细胞培养和动物的传统模型,这些发现增加了使用微工程系统作为新兴替代方案的可能性。