Suppr超能文献

基于模拟退火的新冠肺炎患者图像重建作为超低剂量计算机断层扫描的模型

Simulated Annealing-Based Image Reconstruction for Patients With COVID-19 as a Model for Ultralow-Dose Computed Tomography.

作者信息

Qureshi Shahzad Ahmad, Rehman Aziz Ul, Mir Adil Aslam, Rafique Muhammad, Muhammad Wazir

机构信息

Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.

Agri & Biophotonics Division, National Institute of Lasers and Optronics College, PIEAS, Islamabad, Pakistan.

出版信息

Front Physiol. 2022 Jan 14;12:737233. doi: 10.3389/fphys.2021.737233. eCollection 2021.

Abstract

The proposed algorithm of inverse problem of computed tomography (CT), using limited views, is based on stochastic techniques, namely simulated annealing (SA). The selection of an optimal cost function for SA-based image reconstruction is of prime importance. It can reduce annealing time, and also X-ray dose rate accompanying better image quality. In this paper, effectiveness of various cost functions, namely universal image quality index (UIQI), root-mean-squared error (RMSE), structural similarity index measure (SSIM), mean absolute error (MAE), relative squared error (RSE), relative absolute error (RAE), and root-mean-squared logarithmic error (RMSLE), has been critically analyzed and evaluated for ultralow-dose X-ray CT of patients with COVID-19. For sensitivity analysis of this ill-posed problem, the stochastically estimated images of lung phantom have been reconstructed. The cost function analysis in terms of computational and spatial complexity has been performed using image quality measures, namely peak signal-to-noise ratio (PSNR), Euclidean error (EuE), and weighted peak signal-to-noise ratio (WPSNR). It has been generalized for cost functions that RMSLE exhibits WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB for 8 × 8 and 16 × 16 lung phantoms, respectively, and it has been applied for actual CT-based image reconstruction of patients with COVID-19. We successfully reconstructed chest CT images of patients with COVID-19 using RMSLE with eighteen projections, a 10-fold reduction in radiation dose exposure. This approach will be suitable for accurate diagnosis of patients with COVID-19 having less immunity and sensitive to radiation dose.

摘要

所提出的利用有限视图的计算机断层扫描(CT)逆问题算法基于随机技术,即模拟退火(SA)。为基于SA的图像重建选择最优代价函数至关重要。它可以减少退火时间,还能在提高图像质量的同时降低X射线剂量率。本文对各种代价函数,即通用图像质量指数(UIQI)、均方根误差(RMSE)、结构相似性指数测量(SSIM)、平均绝对误差(MAE)、相对平方误差(RSE)、相对绝对误差(RAE)和均方根对数误差(RMSLE),在新冠肺炎患者超低剂量X射线CT中的有效性进行了严格分析和评估。为了对这个不适定问题进行敏感性分析,重建了肺部体模的随机估计图像。使用图像质量指标,即峰值信噪比(PSNR)、欧几里得误差(EuE)和加权峰值信噪比(WPSNR),对代价函数在计算和空间复杂度方面进行了分析。已推广到代价函数,对于8×8和16×16肺部体模,RMSLE分别表现出64.33±3.98 dB和63.41±2.88 dB的WPSNR,并已应用于新冠肺炎患者基于实际CT的图像重建。我们使用RMSLE和18个投影成功重建了新冠肺炎患者的胸部CT图像,辐射剂量暴露降低了10倍。这种方法将适用于对免疫力较低且对辐射剂量敏感的新冠肺炎患者进行准确诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fcf/8795832/85a8e09ee52b/fphys-12-737233-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验