IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3255-3268. doi: 10.1109/TNNLS.2022.3142425. Epub 2023 Jul 6.
In spite of achieving promising results in hyperspectral image (HSI) restoration, deep-learning-based methodologies still face the problem of spectral or spatial information loss due to neglecting the inner correlation of HSI. To address this issue, we propose an innovative deep recurrent convolution neural network (DnRCNN) model for HSI destriping. To the best of our knowledge, this is the first study on HSI destriping from the perspective of inner band and interband correlation explorations with the recurrent convolution neural network. In the novel DnRCNN, a selective recurrent memory unit (SRMU) is designed to respectively extract the correlative features involved in spectral and spatial domains. Moreover, an innovative recurrent fusion (RF) strategy incorporated with group concatenation is further proposed to remove strip noise and preserve scene details using the complementary features from SRMU. Experimental results on extensive HSI datasets validated that the proposed method achieves a new state-of-the-art (SOTA) HSI destriping performance.
尽管在高光谱图像(HSI)恢复方面取得了有希望的结果,但基于深度学习的方法仍然存在光谱或空间信息丢失的问题,因为它们忽略了 HSI 的内部相关性。为了解决这个问题,我们提出了一种用于 HSI 去条纹的创新深度递归卷积神经网络(DnRCNN)模型。据我们所知,这是首次从带内和带间相关性探索的角度研究 HSI 去条纹问题,使用递归卷积神经网络。在新颖的 DnRCNN 中,设计了一个选择性递归记忆单元(SRMU),分别提取光谱和空间域中涉及的相关特征。此外,还进一步提出了一种创新的递归融合(RF)策略,该策略结合了组串联,使用来自 SRMU 的互补特征来去除条纹噪声并保留场景细节。在广泛的 HSI 数据集上的实验结果验证了所提出的方法在 HSI 去条纹方面达到了新的最先进水平(SOTA)。