Suppr超能文献

基于堆叠集成算法和自动编码器的无创通气失败疗效预测。

Efficacy prediction of noninvasive ventilation failure based on the stacking ensemble algorithm and autoencoder.

机构信息

College of Computer Science, Chongqing University, Chongqing, 400000, People's Republic of China.

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.

出版信息

BMC Med Inform Decis Mak. 2022 Jan 31;22(1):27. doi: 10.1186/s12911-022-01767-z.

Abstract

BACKGROUND

Early prediction of noninvasive ventilation failure is of great significance for critically ill ICU patients to escalate or change treatment. Because clinically collected data are highly time-series correlated and have imbalanced classes, it is difficult to accurately predict the efficacy of noninvasive ventilation for severe patients. This paper aims to precisely predict the failure probability of noninvasive ventilation before or in the early stage (1-2 h) of using it on patients and to explain the correlation of the predicted results.

METHODS

In this paper, we proposed a SMSN model (stacking and modified SMOTE algorithm of prediction of noninvasive ventilation failure). In the feature generation stage, we used an autoencoder algorithm based on long short-term memory (LSTM) to automatically extract time series features. In the modelling stage, we adopted a modified SMOTE algorithm to address imbalanced classes, and three classifiers (logistic regression, random forests, and Catboost) were combined with the stacking ensemble algorithm to achieve high prediction accuracy.

RESULTS

Data from 2495 patients were used to train the SMSN model. Among them, 80% of 2495 patients (1996 patients) were randomly selected as the training set, and 20% of these patients (499 patients) were chosen as the testing set. The F1 of the proposed SMSN model was 79.4%, and the accuracy was 88.2%. Compared with the traditional logistic regression algorithm, the F1 and accuracy were improved by 4.7% and 1.3%, respectively.

CONCLUSIONS

Through SHAP analysis, oxygenation index, pH and H1FIO collected after 1 h of noninvasive ventilation were the most relevant features affecting the prediction.

摘要

背景

对于重症监护病房(ICU)的危重症患者,早期预测无创通气失败对于升级或改变治疗方案具有重要意义。由于临床采集的数据具有高度时间序列相关性且存在类别不平衡,因此难以准确预测严重患者使用无创通气的效果。本文旨在精确预测患者使用无创通气前或早期(1-2 小时)的无创通气失败概率,并解释预测结果的相关性。

方法

本文提出了 SMSN 模型(无创通气失败预测的堆叠和改进 SMOTE 算法)。在特征生成阶段,我们使用基于长短期记忆(LSTM)的自动编码器算法自动提取时间序列特征。在建模阶段,我们采用了改进的 SMOTE 算法来解决类别不平衡问题,并将三个分类器(逻辑回归、随机森林和 Catboost)与堆叠集成算法相结合,以实现高预测精度。

结果

使用 2495 名患者的数据来训练 SMSN 模型。其中,2495 名患者的 80%(1996 名患者)被随机选择作为训练集,这些患者的 20%(499 名患者)被选为测试集。所提出的 SMSN 模型的 F1 值为 79.4%,准确率为 88.2%。与传统的逻辑回归算法相比,F1 值和准确率分别提高了 4.7%和 1.3%。

结论

通过 SHAP 分析,无创通气 1 小时后收集的氧合指数、pH 值和 H1FIO 是影响预测的最相关特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/999b/8805397/825bf3338a5a/12911_2022_1767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验