Deutscher S L, Hirschberg C B
J Biol Chem. 1986 Jan 5;261(1):96-100.
The biochemical defect in the mutant Chinese hamster ovary cell lines Clone 13 (Briles, E. B., Li, E., and Kornfeld, S. (1977). J. Biol. Chem. 252, 1107-1116) and Lec8 (Stanley, P. (1980) ACS Symp. Ser. 128, 214-221) was examined. These two mutants, which belong to the same genetic complementation group, were shown in previous studies to exhibit an 80-90% reduction in galactosylation and sialylation of proteins and lipids when compared to wild-type cells. The same studies, however, demonstrated that the mutants were not deficient in the corresponding sugar nucleotides, glycosyltransferases, and endogenous acceptors for these transferases. We now provide evidence strongly suggesting that the primary defect in Lec8 and Clone 13 cells is their inability to translocate UDP-galactose into the lumen of the Golgi apparatus. Golgi vesicles from Lec8 and Clone 13 CHO glycosylation mutants translocate in vitro UDP-galactose at only 3-5% the rate of vesicles from wild-type CHO cells. The deficiency is specific because vesicles from the mutant cells can translocate adenosine 3'-phosphate 5'-phosphosulfate, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine at rates comparable to those of vesicles from wild-type cells. These studies also suggest that sugar nucleotides sharing a common uridine nucleotide utilize different translocators present in the Golgi membrane in vivo. The consequence of the above-described mutations and the resulting block in galactosylation of macromolecules in vivo on the translocation of CMP-sialic acid into the Golgi lumen was also examined. As expected, Golgi apparatus vesicles from Lec8 cells were unable to incorporate sialic acid into (endogenous) macromolecules. However, the vesicles were able to transport CMP-sialic acid into their lumen, although the rate of translocation was only 17% of that of wild-type-derived Golgi vesicles.
对突变的中国仓鼠卵巢细胞系克隆13(布赖尔斯,E.B.,李,E.,和科恩菲尔德,S.(1977年)。《生物化学杂志》252,1107 - 1116)和Lec8(斯坦利,P.(1980年)《美国化学学会专题论文集》128,214 - 221)中的生化缺陷进行了研究。这两个属于同一遗传互补组的突变体,在先前的研究中显示,与野生型细胞相比,其蛋白质和脂质的半乳糖基化和唾液酸化减少了80 - 90%。然而,同样的研究表明,这些突变体在相应的糖核苷酸、糖基转移酶以及这些转移酶的内源性受体方面并不缺乏。我们现在提供的证据有力地表明,Lec8和克隆13细胞中的主要缺陷是它们无法将UDP - 半乳糖转运到高尔基体腔内。来自Lec8和克隆13 CHO糖基化突变体的高尔基体囊泡在体外转运UDP - 半乳糖的速率仅为野生型CHO细胞囊泡速率的3 - 5%。这种缺陷是特异性的,因为来自突变细胞的囊泡能够以与野生型细胞囊泡相当的速率转运3'-磷酸5'-磷酸硫酸腺苷、UDP - N - 乙酰葡糖胺和UDP - N - 乙酰半乳糖胺。这些研究还表明,共享一个共同尿苷核苷酸的糖核苷酸在体内利用高尔基体膜中存在的不同转运体。还研究了上述突变以及体内大分子半乳糖基化产生的阻断对CMP - 唾液酸转运到高尔基体腔内的影响。正如预期的那样,来自Lec8细胞的高尔基体囊泡无法将唾液酸掺入(内源性)大分子中。然而,这些囊泡能够将CMP - 唾液酸转运到它们的腔内,尽管转运速率仅为野生型来源的高尔基体囊泡的17%。