Toma L, Pinhal M A, Dietrich C P, Nader H B, Hirschberg C B
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA.
J Biol Chem. 1996 Feb 16;271(7):3897-901. doi: 10.1074/jbc.271.7.3897.
The lumen of the Golgi apparatus is the subcellular site where galactose is transferred, from UDP-galactose, to the oligosaccharide chains of glycoproteins, glycolipids, and proteoglycans. The nucleotide sugar, which is synthesized in the cytosol, must first be transported into the Golgi lumen by a specific UDP-galactose transporter. Previously, a mutant polarized epithelial cell (MDCKII-RCAr) with a 2% residual rate of transport of UDP-galactose into the lumen of Golgi vesicles was described (Brandli, A. W., Hansson, G. C., Rodriguez-Boulan, E., and Simons, K. (1988) J. Biol. Chem. 263, 16283-16290). The mutant has an enrichment in glucosyl ceramide and cell surface glycoconjugates bearing terminal N-acetylglucosamine, as well as a 75% reduction in sialylation of cell surface glycoproteins and glycosphingolipids. We have now studied the biosynthesis of galactose containing proteoglycans in this mutant and the corresponding parental cell line. Wild-type Madin-Darby canine kidney cells synthesize significant amounts of chondroitin sulfate, heparan sulfate, and keratan sulfate, while the above mutant synthesizes chondroitin sulfate and heparan sulfate but not keratan sulfate, the only proteoglycan containing galactose in its glycosaminoglycan polymer. The mutant also synthesizes chondroitin 6-sulfate rather than only chondroitin 4-sulfate as wild-type cells. Together, the above results demonstrate that the Golgi membrane UDP-galactose transporter is rate-limiting in the supply of UDP-galactose into the Golgi lumen; this in turn results in selective galactosylation of macromolecules. Apparently, the Km for galactosyltransferases involved in the synthesis of linkage regions of heparan sulfate and chondroitin sulfate are significantly lower than those participating in the synthesis of keratan sulfate polymer, glycoproteins, and glycolipids. The results also suggest that the 6-O-sulfotransferases, in the absence of their natural substrates (keratan sulfate) may catalyze the sulfation of chondroitin 4-sulfate as alternative substrate.
高尔基体腔是一个亚细胞位点,半乳糖在此从尿苷二磷酸半乳糖转移至糖蛋白、糖脂和蛋白聚糖的寡糖链上。在胞质溶胶中合成的核苷酸糖,必须首先通过一种特定的尿苷二磷酸半乳糖转运蛋白转运到高尔基体腔中。此前,曾描述过一种突变的极化上皮细胞(MDCKII-RCAr),其将尿苷二磷酸半乳糖转运到高尔基体囊泡腔中的残留转运率为2%(布兰德利,A. W.,汉松,G. C.,罗德里格斯-布兰,E.,以及西蒙斯,K.(1988年)《生物化学杂志》263卷,16283 - 16290页)。该突变体富含葡糖神经酰胺以及带有末端N-乙酰葡糖胺的细胞表面糖缀合物,同时细胞表面糖蛋白和糖鞘脂的唾液酸化程度降低了75%。我们现在研究了该突变体以及相应亲代细胞系中含半乳糖蛋白聚糖的生物合成。野生型的麦迪逊-达比犬肾细胞能合成大量的硫酸软骨素、硫酸乙酰肝素和硫酸角质素,而上述突变体合成硫酸软骨素和硫酸乙酰肝素,但不合成硫酸角质素,硫酸角质素是其糖胺聚糖聚合物中唯一含半乳糖的蛋白聚糖。该突变体还合成硫酸软骨素6-硫酸酯,而不像野生型细胞那样只合成硫酸软骨素4-硫酸酯。综上所述,上述结果表明高尔基体膜尿苷二磷酸半乳糖转运蛋白在尿苷二磷酸半乳糖供应到高尔基体腔的过程中起限速作用;这进而导致大分子的选择性半乳糖基化。显然,参与硫酸乙酰肝素和硫酸软骨素连接区合成的半乳糖基转移酶的米氏常数显著低于参与硫酸角质素聚合物、糖蛋白和糖脂合成的半乳糖基转移酶的米氏常数。结果还表明,在缺乏天然底物(硫酸角质素)的情况下,6-O-硫酸转移酶可能催化硫酸软骨素4-硫酸酯作为替代底物的硫酸化反应。