Luschmann Thomas, Schmidt Philip, Deppe Frank, Marx Achim, Sanchez Alvaro, Gross Rudolf, Huebl Hans
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str.8, 85748, Garching, Germany.
Physik-Department, Technische Universität München, James-Franck-Str.1, 85748, Garching, Germany.
Sci Rep. 2022 Jan 31;12(1):1608. doi: 10.1038/s41598-022-05438-x.
Nano-electromechanical systems implement the opto-mechanical interaction combining electromagnetic circuits and mechanical elements. We investigate an inductively coupled nano-electromechanical system, where a superconducting quantum interference device (SQUID) realizes the coupling. We show that the resonance frequency of the mechanically compliant string embedded into the SQUID loop can be controlled in two different ways: (1) the bias magnetic flux applied perpendicular to the SQUID loop, (2) the magnitude of the in-plane bias magnetic field contributing to the nano-electromechanical coupling. These findings are quantitatively explained by the inductive interaction contributing to the effective spring constant of the mechanical resonator. In addition, we observe a residual field dependent shift of the mechanical resonance frequency, which we attribute to the finite flux pinning of vortices trapped in the magnetic field biased nanostring.
纳米机电系统实现了结合电磁电路和机械元件的光机械相互作用。我们研究了一种电感耦合纳米机电系统,其中超导量子干涉器件(SQUID)实现耦合。我们表明,嵌入到SQUID环路中的机械柔顺弦的共振频率可以通过两种不同方式进行控制:(1)垂直于SQUID环路施加的偏置磁通量,(2)对纳米机电耦合有贡献的面内偏置磁场的大小。这些发现通过对机械谐振器有效弹簧常数有贡献的电感相互作用得到了定量解释。此外,我们观察到机械共振频率存在与残余场相关的偏移,我们将其归因于被困在磁场偏置纳米弦中的涡旋的有限磁通钉扎。