Suppr超能文献

使用电前庭眼动图(EVestG)对阿尔茨海默病、阿尔茨海默病伴脑血管症状和健康对照进行客观分离的无偏算法。

An unbiased algorithm for objective separation of Alzheimer's, Alzheimer's mixed with cerebrovascular symptomology, and healthy controls from one another using electrovestibulography (EVestG).

机构信息

Diagnostic and Neurological Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Winnipeg, MB, Canada.

出版信息

Med Biol Eng Comput. 2022 Mar;60(3):797-810. doi: 10.1007/s11517-022-02507-1. Epub 2022 Jan 31.

Abstract

Diagnosis of Alzheimer's disease (AD) from AD with cerebrovascular disease pathology (AD-CVD) is a rising challenge. Using electrovestibulography (EVestG) measured signals, we develop an automated feature extraction and selection algorithm for an unbiased identification of AD and AD-CVD from healthy controls as well as their separation from each other. EVestG signals of 24 healthy controls, 16 individuals with AD, and 13 with AD-CVD were analyzed within two separate groupings: One-versus-One and One-versus-All. A multistage feature selection process was conducted over the training dataset using linear support vector machine (SVM) classification with 10-fold cross-validation, k nearest neighbors/averaging imputation, and exhaustive search. The most frequently selected features that achieved highest classification performance were selected. 10-fold cross-validation was applied via a linear SVM classification on the entire dataset. Multivariate analysis was run to test the between population differences while controlling for the covariates. Classification accuracies of ≥ 80% and 78% were achieved for the One-versus-All classification approach and AD versus AD-CVD separation, respectively. The results also held true after controlling for the effect of covariates. AD/AD-CVD participants showed smaller/larger EVestG averaged field potential signals compared to healthy controls and AD-CVD/AD participants. These characteristics are in line with our previous study results.

摘要

阿尔茨海默病(AD)合并血管性疾病病理学(AD-CVD)的诊断是一个日益严峻的挑战。本研究使用前庭诱发肌源性电位(EVestG)测量信号,开发了一种自动特征提取和选择算法,用于从健康对照者中公正地区分 AD 和 AD-CVD,并将它们彼此区分开。分析了 24 名健康对照者、16 名 AD 患者和 13 名 AD-CVD 患者的 EVestG 信号,分为两组进行分析:一对一和一对多。使用具有 10 折交叉验证、k 最近邻/平均插补和穷举搜索的线性支持向量机(SVM)分类对训练数据集进行多阶段特征选择过程。选择最常被选中并具有最高分类性能的特征。通过线性 SVM 分类对整个数据集应用 10 折交叉验证。进行了多变量分析,以测试人群间差异,同时控制协变量的影响。对于一对多分类方法,分类准确率≥80%,对于 AD 与 AD-CVD 的分离,分类准确率≥78%。在控制协变量的影响后,结果仍然成立。AD/AD-CVD 参与者的 EVestG 平均场电位信号小于/大于健康对照者和 AD-CVD/AD 参与者。这些特征与我们之前的研究结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验