Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
Laboratory for Biomolecular Structure, Brookhaven National Laboratory, Upton, NY 11973, USA.
Acta Crystallogr D Struct Biol. 2022 Feb 1;78(Pt 2):174-186. doi: 10.1107/S2059798321011761. Epub 2022 Jan 21.
Cryo-electron microscopy (cryo-EM) is a Nobel Prize-winning technique for determining high-resolution 3D structures of biological macromolecules. A 3D structure is reconstructed from hundreds of thousands of noisy 2D projection images. However, existing 3D reconstruction methods are still time-consuming, and one of the major computational bottlenecks is recovering the unknown orientation of the particle in each 2D image. The dominant methods typically exploit an expensive global search on each image to estimate the missing orientations. Here, a novel end-to-end supervised learning method is introduced to directly recover the missing orientations from 2D cryo-EM images. A neural network is used to approximate the mapping from images to orientations. A robust loss function is proposed for optimizing the parameters of the network, which can handle both asymmetric and symmetric 3D structures. Experiments on synthetic data sets with various symmetry types confirm that the neural network is capable of recovering orientations from 2D cryo-EM images, and the results on a real cryo-EM data set further demonstrate its potential under more challenging imaging conditions.
冷冻电子显微镜(cryo-EM)是一种获得生物大分子高分辨率 3D 结构的诺贝尔奖技术。一个 3D 结构是由数十万张嘈杂的 2D 投影图像重建而来的。然而,现有的 3D 重建方法仍然很耗时,其中一个主要的计算瓶颈是恢复每个 2D 图像中粒子的未知方向。主要方法通常在每张图像上进行昂贵的全局搜索,以估计缺失的方向。这里,提出了一种新颖的端到端监督学习方法,可直接从 2D 冷冻电子显微镜图像中恢复缺失的方向。神经网络用于近似从图像到方向的映射。提出了一个稳健的损失函数来优化网络的参数,该函数可以处理非对称和对称的 3D 结构。具有各种对称类型的合成数据集上的实验证实,神经网络能够从 2D 冷冻电子显微镜图像中恢复方向,实际冷冻电子显微镜数据集上的结果进一步证明了它在更具挑战性的成像条件下的潜力。