Levy Axel, Poitevin Frédéric, Martel Julien, Nashed Youssef, Peck Ariana, Miolane Nina, Ratner Daniel, Dunne Mike, Wetzstein Gordon
LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
Stanford University, Department of Electrical Engineering, Stanford, CA, USA.
Comput Vis ECCV. 2022 Oct;13681:540-557. doi: 10.1007/978-3-031-19803-8_32. Epub 2022 Oct 23.
Cryo-electron microscopy (cryo-EM) has become a tool of fundamental importance in structural biology, helping us understand the basic building blocks of life. The algorithmic challenge of cryo-EM is to jointly estimate the unknown 3D poses and the 3D electron scattering potential of a biomolecule from millions of extremely noisy 2D images. Existing reconstruction algorithms, however, cannot easily keep pace with the rapidly growing size of cryo-EM datasets due to their high computational and memory cost. We introduce cryoAI, an reconstruction algorithm for homogeneous conformations that uses direct gradient-based optimization of particle poses and the electron scattering potential from single-particle cryo-EM data. CryoAI combines a learned encoder that predicts the poses of each particle image with a physics-based decoder to aggregate each particle image into an implicit representation of the scattering potential volume. This volume is stored in the Fourier domain for computational efficiency and leverages a modern coordinate network architecture for memory efficiency. Combined with a symmetrized loss function, this framework achieves results of a quality on par with state-of-the-art cryo-EM solvers for both simulated and experimental data, one order of magnitude faster for large datasets and with significantly lower memory requirements than existing methods.
冷冻电子显微镜(cryo-EM)已成为结构生物学中至关重要的工具,帮助我们理解生命的基本构成要素。冷冻电子显微镜的算法挑战在于,要从数百万张噪声极大的二维图像中联合估计生物分子未知的三维姿态和三维电子散射势。然而,由于现有重建算法计算量和内存成本高,难以跟上冷冻电子显微镜数据集快速增长的规模。我们引入了cryoAI,这是一种用于均匀构象的重建算法,它利用基于梯度的直接优化方法来确定单颗粒冷冻电子显微镜数据中颗粒的姿态和电子散射势。cryoAI将一个用于预测每个颗粒图像姿态的学习编码器与一个基于物理的解码器相结合,将每个颗粒图像聚合为散射势体积的隐式表示。该体积存储在傅里叶域以提高计算效率,并利用现代坐标网络架构提高内存效率。结合对称损失函数,该框架在模拟数据和实验数据上都取得了与现有最先进的冷冻电子显微镜求解器相当的质量结果,对于大型数据集速度快一个数量级,且内存需求比现有方法低得多。