Suppr超能文献

从巴西和厄瓜多尔的 COVID-19 感染患者中发现外周血参数的变化的特征选择。

Feature selection reveal peripheral blood parameter's changes between COVID-19 infections patients from Brazil and Ecuador.

机构信息

Department of Genetics, Institute of Bioscience, and Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.

Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.

出版信息

Infect Genet Evol. 2022 Mar;98:105228. doi: 10.1016/j.meegid.2022.105228. Epub 2022 Jan 30.

Abstract

The investigation of conventional complete blood-count (CBC) data for classifying the SARS-CoV-2 infection status became a topic of interest, particularly as a complementary laboratory tool in developing and third-world countries that financially struggled to test their population. Although hematological parameters in COVID-19-affected individuals from Asian and USA populations are available, there are no descriptions of comparative analyses of CBC findings between COVID-19 positive and negative cases from Latin American countries. In this sense, machine learning techniques have been employed to examine CBC data and aid in screening patients suspected of SARS-CoV-2 infection. In this work, we used machine learning to compare CBC data between two highly genetically distinguished Latin American countries: Brazil and Ecuador. We notice a clear distribution pattern of positive and negative cases between the two countries. Interestingly, almost all red blood cell count parameters were divergent. For males, neutrophils and lymphocytes are distinct between Brazil and Ecuador, while eosinophils are distinguished for females. Finally, neutrophils, lymphocytes, and monocytes displayed a particular distribution for both genders. Therefore, our findings demonstrate that the same set of CBC features relevant to one population is unlikely to apply to another. This is the first study to compare CBC data from two genetically distinct Latin American countries.

摘要

对传统的全血细胞计数 (CBC) 数据进行调查以对 SARS-CoV-2 感染状态进行分类,这成为了一个研究热点,尤其是对于那些难以对其人群进行检测的发展中国家和第三世界国家而言,CBC 数据可以作为一种补充性实验室工具。尽管已经有来自亚洲和美国人群的 COVID-19 患者的血液学参数,但没有描述来自拉丁美洲国家的 COVID-19 阳性和阴性病例的 CBC 结果的比较分析。在这方面,机器学习技术已被用于检查 CBC 数据并帮助筛查疑似 SARS-CoV-2 感染的患者。在这项工作中,我们使用机器学习方法比较了两个具有高度遗传差异的拉丁美洲国家(巴西和厄瓜多尔)之间的 CBC 数据。我们注意到这两个国家的阳性和阴性病例之间存在明显的分布模式。有趣的是,几乎所有的红细胞计数参数都存在差异。对于男性,巴西和厄瓜多尔的中性粒细胞和淋巴细胞不同,而女性的嗜酸性粒细胞则不同。最后,中性粒细胞、淋巴细胞和单核细胞在两性中都有特定的分布。因此,我们的研究结果表明,与一个人群相关的同一组 CBC 特征不太可能适用于另一个人群。这是第一项比较两个具有遗传差异的拉丁美洲国家的 CBC 数据的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45c4/8800568/e60e30f54b45/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验