Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
J Am Chem Soc. 2022 Feb 16;144(6):2667-2678. doi: 10.1021/jacs.1c11341. Epub 2022 Feb 2.
Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL and GroES at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature ( ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL-GroES-ATP, where = 1, 2, 8 and = 0, 1, 2, 8, that are also dependent on Mg and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL-GroES vs GroEL-GroES) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. , , 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. , , 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.
伴侣蛋白是利用 ATP 水解来提供动力并催化蛋白质折叠的纳米机器,这一化学作用与通过蛋白质折叠/重折叠和组装来维持细胞功能直接相关。GroEL 和 GroEL-GroES 复合物是此类蛋白质折叠机器的典型范例。在这里,使用可变温度电喷雾电离(vT-ESI)原生质谱法来描绘溶液温度和 ATP 浓度对 GroEL 和 GroEL-GroES 复合物稳定性的影响。结果表明,在分别为 50°C 和 45°C 的温度下,GroEL 和 GroES 明显不稳定,大大低于先前报道的熔化温度(∼70°C)。这种失稳伴随着以前未报道过的具有不同化学计量比的温度依赖性反应产物,即 GroEL-GroES-ATP,其中=1、2、8 和=0、1、2、8,还取决于 Mg 和 ATP 浓度。可变温度原生质谱揭示了关于 GroEL 对温度影响的稳定性的新见解:(i)温度依赖性的 ATP 与 GroEL 结合;(ii)温度以及 Mg 和 ATP 浓度对 GroEL-GroES 复合物化学计量的影响,Mg 的影响比 ATP 更大;(iii)GroEL-GroES 复合物的温度依赖性化学计量(GroEL-GroES 与 GroEL-GroES)在 24°C 和 40°C 之间发生变化。使用原生 MS 和低温 EM 获得的结果之间的相似性[Clare 等人。GroEL-gp31 复合物中的扩展蛋白质折叠笼。,,905-911;Ranson 等人。GroEL-GroES 复合物中 ATP 水解的变构信号。,,147-152]强调了原生 MS 在分子机器研究以及鉴定伴侣蛋白辅助的蛋白质折叠循环中涉及的关键中间物方面的实用性。