Heimfarth Daniel, Balcı Leinen Merve, Klein Patrick, Allard Sybille, Scherf Ullrich, Zaumseil Jana
Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8209-8217. doi: 10.1021/acsami.1c23586. Epub 2022 Feb 2.
Organic electrochemical transistors (ECTs) are an important building block for bioelectronics. To promote the required ion transport through the active layer, state-of-the-art semiconducting polymers feature hydrophilic ethylene glycol side chains that increase the volumetric capacitance and transconductance of the devices. Here, we apply this concept to polymer-wrapped single-walled carbon nanotubes (SWCNTs) as a high-mobility semiconducting material. We replace the polyfluorene copolymer (PFO-BPy), which is used for selectively dispersing semiconducting (6,5) SWCNTs and contains octyl side chains, by an equivalent polymer with tetraethylene glycol side chains. Aerosol-jet printed networks of these SWCNTs are applied as the active layer in water-gated ECTs. These show high hole mobilities (3-15 cm·V·s), significantly improved volumetric capacitances and larger transconductances. Thin networks of SWCNTs reach (219 ± 16) F·cm·V·s as the product of mobility and volumetric capacitance. photoluminescence measurements show more efficient quenching of the near-infrared fluorescence for nanotube networks with hydrophilic glycol side chains compared to those with hydrophobic alkyl side chains, thus corroborating more complete charging under bias. Overall, networks of semiconducting SWCNTs with such tailored wrapping polymers provide excellent device performance. Combined with their inherent mechanical flexibility and durability, they constitute a competitive material for bioelectronics.
有机电化学晶体管(ECTs)是生物电子学的重要组成部分。为促进所需的离子通过活性层传输,最先进的半导体聚合物具有亲水性乙二醇侧链,可增加器件的体积电容和跨导。在此,我们将这一概念应用于聚合物包裹的单壁碳纳米管(SWCNTs),作为一种高迁移率的半导体材料。我们用具有四乙二醇侧链的等效聚合物取代了用于选择性分散半导体(6,5)SWCNTs且含有辛基侧链的聚芴共聚物(PFO-BPy)。这些SWCNTs的气溶胶喷射印刷网络被用作水门控ECTs的活性层。这些器件显示出高空穴迁移率(3 - 15 cm²·V⁻¹·s⁻¹)、显著提高的体积电容和更大的跨导。SWCNTs的薄网络的迁移率与体积电容的乘积达到(219 ± 16)F·cm⁻³·V⁻¹·s⁻¹。光致发光测量表明,与具有疏水烷基侧链的纳米管网络相比,具有亲水性二醇侧链的纳米管网络对近红外荧光的猝灭更有效,从而证实了在偏压下更完全的充电。总体而言,具有这种定制包裹聚合物的半导体SWCNTs网络提供了优异的器件性能。结合其固有的机械柔韧性和耐久性,它们构成了生物电子学的一种有竞争力的材料。