Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan.
Department of Life Science & Technology, Kansai University, Osaka, 564-8680, Japan; Graduate School of Science and Engineering, Kansai University, Osaka, 564-8680, Japan.
Biochem Biophys Res Commun. 2022 Mar 12;596:43-48. doi: 10.1016/j.bbrc.2022.01.053. Epub 2022 Jan 19.
ε-poly-l-lysine (ε-PL) synthetase (Pls) is a membrane protein that possesses both adenylation and thiolation domains, characteristic of non-ribosomal peptide synthetases (NRPSs). Pls catalyzes the polymerization of l-Lys molecules in a highly specific manner within proteinogenic amino acids. However, this enzyme accepts certain l-Lys analogs which contain small substituent groups at the middle position of the side chain. From the crystal structures of the adenylation domain from NRPSs, the amino acid residues involved in substrate binding can be assumed; however, the precise interactions for better understanding the Pls recognition of l-Lys and its analogs have not yet been fully elucidated. Here, we determined the crystal structure of the adenylation domain of Pls in complex with the intermediate lysyl adenylate at 2.3 Å resolution. This is the first structure determination of the l-Lys activating adenylation domain. The crystal structure reveals that the shape of the substrate-binding pocket determines the specific recognition of l-Lys and its analogs and the electrostatic and hydrogen-bonding interactions further strengthen substrate binding. This study helps us understand the ε-PL synthesis mechanism and contributes to improving our knowledge of the molecular mechanism of NRPS adenylation domains towards their successful application in bioengineering.
ε-聚赖氨酸(ε-PL)合酶(Pls)是一种膜蛋白,具有氨酰化和硫酯化结构域,这是典型的非核糖体肽合酶(NRPSs)的特征。Pls 以高度特异性的方式催化 l-Lys 分子在蛋白质氨基酸内聚合。然而,这种酶接受某些 l-Lys 类似物,这些类似物在侧链的中间位置含有小取代基。从 NRPSs 的氨酰化结构域的晶体结构中,可以推测出参与底物结合的氨基酸残基;然而,为了更好地理解 Pls 对 l-Lys 及其类似物的识别,其精确的相互作用尚未完全阐明。在这里,我们以 2.3Å 的分辨率确定了 Pls 的氨酰化结构域与中间赖氨酸腺苷酸复合物的晶体结构。这是首次确定 l-Lys 激活氨酰化结构域的结构。晶体结构揭示了底物结合口袋的形状决定了 l-Lys 和其类似物的特异性识别,静电和氢键相互作用进一步增强了底物结合。这项研究有助于我们了解 ε-PL 的合成机制,并有助于提高我们对 NRPS 氨酰化结构域的分子机制的认识,从而成功应用于生物工程。