Jiang Xiaoyi, Huang Jindou, Bi Zhenhua, Ni Wenjun, Gurzadyan Gagik, Zhu Yongan, Zhang Zhenyi
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China.
State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian, 116024, P. R. China.
Adv Mater. 2022 Apr;34(14):e2109330. doi: 10.1002/adma.202109330. Epub 2022 Feb 19.
Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO activation-barrier. However, the hot electron-driven CO reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W O nanowires on the outer surface of Au nanoparticles-embedded TiO electrospun nanofibers are assembled to obtain lots of Au/TiO /W O sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W O can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO /W O interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO /W O plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH and CO production-rates at ≈35.55 and ≈2.57 µmol g h , respectively, and the CH -product selectivity at ≈93.3%.
等离子体纳米结构在光催化CO还原方面具有巨大的应用潜力,因为其局域表面等离子体共振能够收集低能光子以产生高能“热电子”来降低CO活化能垒。然而,热电子驱动的CO还原通常受到效率低下和对生成动力学不利的碳氢化合物选择性低的限制。在此,提出了一种等离子体活性“热点”受限光催化的新思路来克服这一缺点。将嵌入金纳米颗粒的TiO电纺纳米纤维外表面的WO纳米线组装起来,以在形成的等离子体异质结构中获得大量Au/TiO/WO三明治状子结构。金与相邻WO之间的短距离(<10 nm)可诱导强烈的等离子体耦合,从而在子结构中形成活性“热点”。这些活性“热点”不仅能够聚集入射光以增强“热电子”的产生和迁移,还能通过Au/TiO/WO界面处的双异质活性位点(Au-O-Ti和W-O-Ti)捕获质子和CO,系统实验和模拟分析证明了这一点。因此,在43±2°C的光催化CO还原过程中,这些富集在精心设计的Au/TiO/WO等离子体异质结构中的活性“热点”能够协同限制热电子、质子和CO中间体,从而分别产生约35.55和约2.57 μmol g h的CH和CO生成速率,以及约93.3%的CH产物选择性。