Suppr超能文献

用于自传感压阻材料增材制造的碳纳米管掺杂热塑性纳米复合材料的合成与表征

Synthesis and Characterization of Carbon Nanotube-Doped Thermoplastic Nanocomposites for the Additive Manufacturing of Self-Sensing Piezoresistive Materials.

作者信息

Verma Pawan, Ubaid Jabir, Varadarajan Kartik M, Wardle Brian L, Kumar S

机构信息

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States.

James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.

出版信息

ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8361-8372. doi: 10.1021/acsami.1c20491. Epub 2022 Feb 4.

Abstract

We present carbon nanotube (CNT)-reinforced polypropylene random copolymer (PPR) nanocomposites for the additive manufacturing of self-sensing piezoresistive materials via fused filament fabrication. The PPR/CNT feedstock filaments were synthesized through high shear-induced melt blending with controlled CNT loading up to 8 wt % to enable three-dimensional (3D) printing of nanoengineered PPR/CNT composites. The CNTs were found to enhance crystallinity (up to 6%) in PPR-printed parts, contributing to the overall CNT-reinforcement effect that increases both stiffness and strength (increases of 56% in modulus and 40% in strength at 8 wt % CNT loading). Due to electrical conductivity (∼10-10 S/cm with CNT loading) imparted to the PPR by the CNT network, multifunctional strain and damage sensing in 3D-printed CNT/PPR bulk composites and lattice structures are revealed. A useful range of gauge factors () is identified for strain sensing ( = 10.1-17.4) and damage sensing ( = 20-410) across the range of CNT loadings for the 0° print direction. Novel auxetic re-entrant and S-unit cell lattices are printed, with multifunctionality demonstrated as strain- and damage-sensing in tension. The PPR/CNT multifunctional nanocomposite lattices demonstrated here exhibit tunable strain and damage sensitivity and have application in biomedical engineering for the creation of self-sensing patient-specific devices such as orthopedic braces, where the ability to sense strain (and stress) can provide direct information for optimization of brace design/fit over the course of treatment.

摘要

我们展示了用于通过熔融长丝制造法增材制造自感应压阻材料的碳纳米管(CNT)增强聚丙烯无规共聚物(PPR)纳米复合材料。PPR/CNT原料长丝是通过高剪切诱导熔体共混合成的,将CNT负载量控制在8 wt%以内,以实现纳米工程PPR/CNT复合材料的三维(3D)打印。研究发现,碳纳米管可提高PPR打印部件的结晶度(高达6%),这有助于增强整体的CNT增强效果,从而提高刚度和强度(在8 wt%的CNT负载量下,模量增加56%,强度增加40%)。由于CNT网络赋予PPR导电性(CNT负载时约为10-10 S/cm),3D打印的CNT/PPR块状复合材料和晶格结构中展现出多功能应变和损伤传感特性。对于0°打印方向的CNT负载范围,确定了一个适用于应变传感( = 10.1-17.4)和损伤传感( = 20-410)的有用的应变片系数范围。打印了新型的负泊松比重入晶格和S单元晶格,并展示了其在拉伸时作为应变和损伤传感的多功能性。本文展示的PPR/CNT多功能纳米复合材料晶格表现出可调的应变和损伤敏感性,在生物医学工程中可用于制造自感应的患者专用设备,如矫形支具,在治疗过程中,感知应变(和应力)的能力可为优化支具设计/贴合度提供直接信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验