Suppr超能文献

无菌植物系统用于根系微生物群落的重建和功能研究。

Gnotobiotic Plant Systems for Reconstitution and Functional Studies of the Root Microbiota.

机构信息

Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.

出版信息

Curr Protoc. 2022 Feb;2(2):e362. doi: 10.1002/cpz1.362.

Abstract

Healthy plants host a multi-kingdom community of microbes, which is known as the plant microbiota. Amplicon sequencing technologies for microbial genomic markers were a milestone in revealing the taxonomic composition of the microbiota and its variation associated with a plant host in natural environments. However, this method alone does not allow conclusions to be drawn about functions of these microbial assemblages for the plant. The development of culture collections, which recapitulate natural microbial communities in their diversity, and multiple gnotobiotic plant systems therefore represent a breakthrough in plant-microbiota research such that plants can be inoculated with defined communities to study proposed microbiota functions. These systems provided, for the root microbiota, first insights into mechanisms underlying microbial community establishment and contributions of its microbial members to indirect pathogen protection and mineral nutrition of the host. We argue that the choice of a gnotobiotic system for microbiota reconstitution and subsequent functional analysis depends on the particular plant trait that is influenced by the microbiota. We start by discussing the advantages and limitations of using individual gnotobiotic systems and then describe the general procedures for preparing bacterial cultures from the Arabidopsis thaliana At-R-SPHERE culture collection for inoculation and cocultivation in two gnotobiotic plant growth systems using agar and perlite matrix. Additionally, a protocol for inoculation of plants with opportunistic Pseudomonas pathogens is provided. Lastly, we describe a high-throughput system for visual assessment of roots after inoculation with individual mutants of a transposon library generated from a root-derived bacterial commensal. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of bacterial cultures from At-R-SPHERE Support Protocol 1: Validation of strains by sequencing hypervariable regions of the 16S rRNA gene Basic Protocol 2: Coinoculation of plants grown on an agar matrix with microbial elicitor and a defined microbial community Alternate Protocol: Inoculation of plants cultivated in a perlite-based growth system Support Protocol 2: Surface sterilization of Arabidopsis thaliana seeds Basic Protocol 3: Inoculation using a Pseudomonas opportunistic pathogen Basic Protocol 4: Assessment of commensal-mediated root phenotypes using phytostrips.

摘要

健康植物宿主的微生物群落,被称为植物微生物组。用于微生物基因组标记的扩增子测序技术是揭示微生物群落的分类组成及其与自然环境中植物宿主相关的变化的一个里程碑。然而,仅使用这种方法并不能得出关于这些微生物组合对植物功能的结论。因此,培养物收集的发展,复制了自然微生物群落的多样性,以及多种无菌植物系统代表了植物-微生物群研究的突破,使得可以用定义的群落接种植物来研究拟议的微生物群功能。这些系统为根微生物群提供了第一个见解,即微生物群落建立的机制以及其微生物成员对宿主间接病原体保护和矿物质营养的贡献。我们认为,选择无菌系统进行微生物组重建和随后的功能分析取决于受微生物组影响的特定植物性状。我们首先讨论使用单个无菌系统的优点和局限性,然后描述从拟南芥 At-R-SPHERE 培养物收集制备细菌培养物的一般程序,用于在两个无菌植物生长系统中用琼脂和珍珠岩基质接种和共培养。此外,还提供了用机会性病原体假单胞菌接种植物的方案。最后,我们描述了一种高通量系统,用于在接种源自根衍生细菌共生体的转座子文库的单个突变体后对根进行可视化评估。© 2022 作者。Wiley Periodicals LLC 出版的《当代协议》。基本方案 1:从 At-R-SPHERE 制备细菌培养物 支持方案 1:通过测序 16S rRNA 基因的高变区验证菌株 基本方案 2:在琼脂基质上与微生物诱导剂和定义的微生物群落共接种植物 替代方案:在基于珍珠岩的生长系统中接种植物 支持方案 2:拟南芥种子的表面消毒 基本方案 3:使用机会性病原体接种 基本方案 4:使用 phytostrips 评估共生体介导的根表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验