Suppr超能文献

超越频率:高频振荡的时变动力学作为发作起始区的生物标志物。

Beyond rates: time-varying dynamics of high frequency oscillations as a biomarker of the seizure onset zone.

机构信息

Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.

Department of Biomedical Engineering, University of California, Irvine, CA, United States of America.

出版信息

J Neural Eng. 2022 Feb 22;19(1). doi: 10.1088/1741-2552/ac520f.

Abstract

. High frequency oscillations (HFOs) recorded by intracranial electrodes have generated excitement for their potential to help localize epileptic tissue for surgical resection. However, the number of HFOs per minute (i.e. the HFO 'rate') is not stable over the duration of intracranial recordings; for example, the rate of HFOs increases during periods of slow-wave sleep. Moreover, HFOs that are predictive of epileptic tissue may occur in oscillatory patterns due to phase coupling with lower frequencies. Therefore, we sought to further characterize between-seizure (i.e. 'interictal') HFO dynamics both within and outside the seizure onset zone (SOZ).. Using long-term intracranial EEG (mean duration 10.3 h) from 16 patients, we automatically detected HFOs using a new algorithm. We then fit a hierarchical negative binomial model to the HFO counts. To account for differences in HFO dynamics and rates between sleep and wakefulness, we also fit a mixture model to the same data that included the ability to switch between two discrete brain states that were automatically determined during the fitting process. The ability to predict the SOZ by model parameters describing HFO dynamics (i.e. clumping coefficients and coefficients of variation) was assessed using receiver operating characteristic curves.. Parameters that described HFO dynamics were predictive of SOZ. In fact, these parameters were found to be more consistently predictive than HFO rate. Using concurrent scalp EEG in two patients, we show that the model-found brain states corresponded to (1) non-REM sleep and (2) awake and rapid eye movement sleep. However the brain state most likely corresponding to slow-wave sleep in the second model improved SOZ prediction compared to the first model for only some patients.. This work suggests that delineation of SOZ with interictal data can be improved by the inclusion of time-varying HFO dynamics.

摘要

. 颅内电极记录的高频振荡 (HFO) 因其有可能帮助定位用于手术切除的癫痫组织而引起了人们的兴趣。然而,HFO 每分钟的数量(即 HFO“率”)在颅内记录的持续时间内并不稳定;例如,HFO 率在慢波睡眠期间增加。此外,与较低频率的相位耦合,预测癫痫组织的 HFO 可能会以振荡模式发生。因此,我们试图进一步描述发作间期(即“发作间期”)HFO 动力学,包括在发作起始区(SOZ)内外。. 使用 16 名患者的长期颅内 EEG(平均持续时间 10.3 小时),我们使用新算法自动检测 HFO。然后,我们使用分层负二项式模型拟合 HFO 计数。为了说明睡眠和清醒状态下 HFO 动力学和率的差异,我们还使用混合模型拟合相同数据,该模型包括在拟合过程中自动确定的两种离散脑状态之间切换的能力。通过描述 HFO 动力学的模型参数(即聚集系数和变异系数)来评估预测 SOZ 的能力,使用接收器操作特征曲线。. 描述 HFO 动力学的参数可预测 SOZ。事实上,这些参数比 HFO 率更具有一致性的预测能力。在两名患者的同时头皮 EEG 中,我们表明模型发现的脑状态对应于(1)非快速眼动睡眠和(2)清醒和快速眼动睡眠。然而,第二个模型中最有可能对应于慢波睡眠的脑状态仅对某些患者而言,与第一个模型相比,提高了 SOZ 预测的准确性。. 这项工作表明,通过包含时变 HFO 动力学,可以改善发作间期数据的 SOZ 描绘。

相似文献

8
Diurnal rhythms of spontaneous intracranial high-frequency oscillations.自发性颅内高频震荡的昼夜节律。
Seizure. 2022 Nov;102:105-112. doi: 10.1016/j.seizure.2022.09.019. Epub 2022 Sep 29.

本文引用的文献

3
Multi-feature localization of epileptic foci from interictal, intracranial EEG.从发作间期颅内 EEG 中对癫痫灶进行多特征定位。
Clin Neurophysiol. 2019 Oct;130(10):1945-1953. doi: 10.1016/j.clinph.2019.07.024. Epub 2019 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验